Add Koch teleop

This commit is contained in:
Simon Alibert 2025-03-03 18:58:54 +01:00
parent d75d904e43
commit ac89c8d226
3 changed files with 190 additions and 0 deletions

View File

@ -0,0 +1,4 @@
from .configuration_koch import KochTeleopConfig
from .teleop_koch import KochTeleop
__all__ = ["KochTeleopConfig", "KochTeleop"]

View File

@ -0,0 +1,40 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from ..config import TeleoperatorConfig
@TeleoperatorConfig.register_subclass("koch")
@dataclass
class KochTeleopConfig(TeleoperatorConfig):
# Port to connect to the teloperator
port: str
# Sets the arm in torque mode with the gripper motor set to this angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
gripper_open_degree: float = 35.156
mock: bool = False
# motors
shoulder_pan: tuple = (1, "xl330-m077")
shoulder_lift: tuple = (2, "xl330-m077")
elbow_flex: tuple = (3, "xl330-m077")
wrist_flex: tuple = (4, "xl330-m077")
wrist_roll: tuple = (5, "xl330-m077")
gripper: tuple = (6, "xl330-m077")

View File

@ -0,0 +1,146 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import numpy as np
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors.dynamixel import (
DynamixelMotorsBus,
TorqueMode,
run_arm_calibration,
set_operating_mode,
)
from ..teleoperator import Teleoperator
from .configuration_koch import KochTeleopConfig
class KochTeleop(Teleoperator):
"""
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
"""
config_class = KochTeleopConfig
name = "koch"
def __init__(self, config: KochTeleopConfig):
super().__init__(config)
self.config = config
self.robot_type = config.type
self.id = config.id
self.arm = DynamixelMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": config.shoulder_pan,
"shoulder_lift": config.shoulder_lift,
"elbow_flex": config.elbow_flex,
"wrist_flex": config.wrist_flex,
"wrist_roll": config.wrist_roll,
"gripper": config.gripper,
},
)
self.is_connected = False
self.logs = {}
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def feedback_feature(self) -> dict:
return {}
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
logging.info("Connecting arm.")
self.arm.connect()
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.arm.write("Torque_Enable", TorqueMode.DISABLED.value)
self.calibrate()
set_operating_mode(self.arm)
# Enable torque on the gripper and move it to 45 degrees so that we can use it as a trigger.
logging.info("Activating torque.")
self.arm.write("Torque_Enable", TorqueMode.ENABLED.value, "gripper")
self.arm.write("Goal_Position", self.config.gripper_open_degree, "gripper")
# Check arm can be read
self.arm.read("Present_Position")
self.is_connected = True
def calibrate(self) -> None:
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
arm_calib_path = self.calibration_dir / f"{self.id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
# TODO(rcadene): display a warning in __init__ if calibration file not available
logging.info(f"Missing calibration file '{arm_calib_path}'")
calibration = run_arm_calibration(self.arm, self.robot_type, self.name, "leader")
logging.info(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
self.arm.set_calibration(calibration)
def get_action(self) -> np.ndarray:
"""The returned action does not have a batch dimension."""
# Read arm position
before_read_t = time.perf_counter()
action = self.arm.read("Present_Position")
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
return action
def send_feedback(self, feedback: np.ndarray) -> None:
# TODO(rcadene, aliberts): Implement force feedback
pass
def disconnect(self) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)
self.arm.disconnect()
self.is_connected = False