WIP
This commit is contained in:
parent
eb56a96e67
commit
b10960140d
|
@ -13,12 +13,21 @@
|
||||||
"from examples.notebook_utils import config_notebook\n",
|
"from examples.notebook_utils import config_notebook\n",
|
||||||
"from lerobot.scripts.eval import eval\n",
|
"from lerobot.scripts.eval import eval\n",
|
||||||
"\n",
|
"\n",
|
||||||
"OUT_DIR = Path(\"./outputs\")\n",
|
"# Select policy and env\n",
|
||||||
"POLICY = \"act\"\n",
|
"POLICY = \"act\" # \"tdmpc\" | \"diffusion\"\n",
|
||||||
"ENV = \"aloha\"\n",
|
"ENV = \"aloha\" # \"pusht\" | \"simxarm\"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# setup config\n",
|
"# Select device\n",
|
||||||
"cfg = config_notebook(policy=POLICY, env=ENV, device=\"cpu\", print_config=True)"
|
"DEVICE = \"mps\" # \"cpu\" | \"cuda\"\n",
|
||||||
|
"\n",
|
||||||
|
"# Generated videos will be written here\n",
|
||||||
|
"OUT_DIR = Path(\"./outputs\")\n",
|
||||||
|
"OUT_EXAMPLE = OUT_DIR / \"eval\" / \"eval_episode_0.mp4\"\n",
|
||||||
|
"\n",
|
||||||
|
"# Setup config\n",
|
||||||
|
"cfg = config_notebook(policy=POLICY, env=ENV, device=DEVICE, print_config=False)\n",
|
||||||
|
"print(cfg.env.episode_length)\n",
|
||||||
|
"print(cfg.n_action_steps)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -28,7 +37,7 @@
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"eval(cfg, out_dir=OUT_DIR)\n",
|
"eval(cfg, out_dir=OUT_DIR)\n",
|
||||||
"Video(OUT_DIR / \"eval\" / \"eval_episode_0.mp4\", embed=True)"
|
"Video(OUT_EXAMPLE, embed=True)"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
|
|
@ -145,17 +145,24 @@ def eval(cfg: dict, out_dir=None):
|
||||||
logging.info("make_env")
|
logging.info("make_env")
|
||||||
env = make_env(cfg, transform=offline_buffer.transform)
|
env = make_env(cfg, transform=offline_buffer.transform)
|
||||||
|
|
||||||
# TODO(aliberts, Cadene): fetch pretrained model from HF hub
|
# WIP
|
||||||
if cfg.policy.pretrained_model_path:
|
|
||||||
policy = make_policy(cfg)
|
policy = make_policy(cfg)
|
||||||
policy = TensorDictModule(
|
policy = TensorDictModule(
|
||||||
policy,
|
policy,
|
||||||
in_keys=["observation", "step_count"],
|
in_keys=["observation", "step_count"],
|
||||||
out_keys=["action"],
|
out_keys=["action"],
|
||||||
)
|
)
|
||||||
else:
|
# TODO(aliberts, Cadene): fetch pretrained model from HF hub
|
||||||
# when policy is None, rollout a random policy
|
# if cfg.policy.pretrained_model_path:
|
||||||
policy = None
|
# policy = make_policy(cfg)
|
||||||
|
# policy = TensorDictModule(
|
||||||
|
# policy,
|
||||||
|
# in_keys=["observation", "step_count"],
|
||||||
|
# out_keys=["action"],
|
||||||
|
# )
|
||||||
|
# else:
|
||||||
|
# # when policy is None, rollout a random policy
|
||||||
|
# policy = None
|
||||||
|
|
||||||
metrics = eval_policy(
|
metrics = eval_policy(
|
||||||
env,
|
env,
|
||||||
|
|
Loading…
Reference in New Issue