Add context manager for seeding (#164)

This commit is contained in:
Alexander Soare 2024-05-09 17:58:39 +01:00 committed by GitHub
parent 473345fdf6
commit b187942db4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 65 additions and 0 deletions

View File

@ -1,8 +1,10 @@
import logging
import os.path as osp
import random
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
from typing import Generator
import hydra
import numpy as np
@ -39,6 +41,31 @@ def set_global_seed(seed):
torch.cuda.manual_seed_all(seed)
@contextmanager
def seeded_context(seed: int) -> Generator[None, None, None]:
"""Set the seed when entering a context, and restore the prior random state at exit.
Example usage:
```
a = random.random() # produces some random number
with seeded_context(1337):
b = random.random() # produces some other random number
c = random.random() # produces yet another random number, but the same it would have if we never made `b`
```
"""
random_state = random.getstate()
np_random_state = np.random.get_state()
torch_random_state = torch.random.get_rng_state()
torch_cuda_random_state = torch.cuda.random.get_rng_state()
set_global_seed(seed)
yield None
random.setstate(random_state)
np.random.set_state(np_random_state)
torch.random.set_rng_state(torch_random_state)
torch.cuda.random.set_rng_state(torch_cuda_random_state)
def init_logging():
def custom_format(record):
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

38
tests/test_utils.py Normal file
View File

@ -0,0 +1,38 @@
import random
from typing import Callable
import numpy as np
import pytest
import torch
from lerobot.common.utils.utils import seeded_context, set_global_seed
@pytest.mark.parametrize(
"rand_fn",
[
random.random,
np.random.random,
lambda: torch.rand(1).item(),
]
+ [lambda: torch.rand(1, device="cuda")]
if torch.cuda.is_available()
else [],
)
def test_seeding(rand_fn: Callable[[], int]):
set_global_seed(0)
a = rand_fn()
with seeded_context(1337):
c = rand_fn()
b = rand_fn()
set_global_seed(0)
a_ = rand_fn()
b_ = rand_fn()
# Check that `set_global_seed` lets us reproduce a and b.
assert a_ == a
# Additionally, check that the `seeded_context` didn't interrupt the global RNG.
assert b_ == b
set_global_seed(1337)
c_ = rand_fn()
# Check that `seeded_context` and `global_seed` give the same reproducibility.
assert c_ == c