Add context manager for seeding (#164)
This commit is contained in:
parent
473345fdf6
commit
b187942db4
|
@ -1,8 +1,10 @@
|
|||
import logging
|
||||
import os.path as osp
|
||||
import random
|
||||
from contextlib import contextmanager
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Generator
|
||||
|
||||
import hydra
|
||||
import numpy as np
|
||||
|
@ -39,6 +41,31 @@ def set_global_seed(seed):
|
|||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def seeded_context(seed: int) -> Generator[None, None, None]:
|
||||
"""Set the seed when entering a context, and restore the prior random state at exit.
|
||||
|
||||
Example usage:
|
||||
|
||||
```
|
||||
a = random.random() # produces some random number
|
||||
with seeded_context(1337):
|
||||
b = random.random() # produces some other random number
|
||||
c = random.random() # produces yet another random number, but the same it would have if we never made `b`
|
||||
```
|
||||
"""
|
||||
random_state = random.getstate()
|
||||
np_random_state = np.random.get_state()
|
||||
torch_random_state = torch.random.get_rng_state()
|
||||
torch_cuda_random_state = torch.cuda.random.get_rng_state()
|
||||
set_global_seed(seed)
|
||||
yield None
|
||||
random.setstate(random_state)
|
||||
np.random.set_state(np_random_state)
|
||||
torch.random.set_rng_state(torch_random_state)
|
||||
torch.cuda.random.set_rng_state(torch_cuda_random_state)
|
||||
|
||||
|
||||
def init_logging():
|
||||
def custom_format(record):
|
||||
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
import random
|
||||
from typing import Callable
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.common.utils.utils import seeded_context, set_global_seed
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"rand_fn",
|
||||
[
|
||||
random.random,
|
||||
np.random.random,
|
||||
lambda: torch.rand(1).item(),
|
||||
]
|
||||
+ [lambda: torch.rand(1, device="cuda")]
|
||||
if torch.cuda.is_available()
|
||||
else [],
|
||||
)
|
||||
def test_seeding(rand_fn: Callable[[], int]):
|
||||
set_global_seed(0)
|
||||
a = rand_fn()
|
||||
with seeded_context(1337):
|
||||
c = rand_fn()
|
||||
b = rand_fn()
|
||||
set_global_seed(0)
|
||||
a_ = rand_fn()
|
||||
b_ = rand_fn()
|
||||
# Check that `set_global_seed` lets us reproduce a and b.
|
||||
assert a_ == a
|
||||
# Additionally, check that the `seeded_context` didn't interrupt the global RNG.
|
||||
assert b_ == b
|
||||
set_global_seed(1337)
|
||||
c_ = rand_fn()
|
||||
# Check that `seeded_context` and `global_seed` give the same reproducibility.
|
||||
assert c_ == c
|
Loading…
Reference in New Issue