Update configuration files for improved performance and flexibility

- Increased frame rate in `maniskill_example.yaml` from 20 to 400 for enhanced simulation speed.
- Updated `sac_maniskill.yaml` to set `dataset_repo_id` to null and adjusted `grad_clip_norm` from 10.0 to 40.0.
- Changed `storage_device` from "cpu" to "cuda" for better resource utilization.
- Modified `save_freq` from 2000000 to 1000000 to optimize saving intervals.
- Enhanced input normalization parameters for `observation.state` and `observation.image` in SAC policy.
- Adjusted `num_critics` from 10 to 2 and `policy_parameters_push_frequency` from 1 to 4 for improved training dynamics.
- Updated `learner_server.py` to utilize `offline_buffer_capacity` for replay buffer initialization.
- Changed action multiplier in `maniskill_manipulator.py` from 1 to 0.03 for finer control over actions.
This commit is contained in:
AdilZouitine 2025-03-19 09:54:46 +00:00
parent f899edb57f
commit b7bd13570f
4 changed files with 35 additions and 33 deletions

View File

@ -1,6 +1,6 @@
# @package _global_
fps: 20
fps: 400
env:
name: maniskill/pushcube

View File

@ -8,22 +8,23 @@
# env.gym.obs_type=environment_state_agent_pos \
seed: 1
dataset_repo_id: "AdilZtn/Maniskill-Pushcube-demonstration-medium"
# dataset_repo_id: "AdilZtn/Maniskill-Pushcube-demonstration-medium"
dataset_repo_id: null
training:
# Offline training dataloader
num_workers: 4
batch_size: 512
grad_clip_norm: 10.0
grad_clip_norm: 40.0
lr: 3e-4
storage_device: "cpu"
storage_device: "cuda"
eval_freq: 2500
log_freq: 10
save_freq: 2000000
save_freq: 1000000
online_steps: 1000000
online_rollout_n_episodes: 10
@ -32,17 +33,12 @@ training:
online_sampling_ratio: 1.0
online_env_seed: 10000
online_buffer_capacity: 200000
offline_buffer_capacity: 100000
online_buffer_seed_size: 0
online_step_before_learning: 500
do_online_rollout_async: false
policy_update_freq: 1
# delta_timestamps:
# observation.environment_state: "[i / ${fps} for i in range(${policy.horizon} + 1)]"
# observation.state: "[i / ${fps} for i in range(${policy.horizon} + 1)]"
# action: "[i / ${fps} for i in range(${policy.horizon})]"
# next.reward: "[i / ${fps} for i in range(${policy.horizon})]"
policy:
name: sac
@ -68,28 +64,33 @@ policy:
camera_number: 1
# Normalization / Unnormalization
input_normalization_modes: null
# input_normalization_modes:
# observation.state: min_max
input_normalization_params: null
# observation.state:
# min: [-1.9361e+00, -7.7640e-01, -7.7094e-01, -2.9709e+00, -8.5656e-01,
# 1.0764e+00, -1.2680e+00, 0.0000e+00, 0.0000e+00, -9.3448e+00,
# -3.3828e+00, -3.8420e+00, -5.2553e+00, -3.4154e+00, -6.5082e+00,
# -6.0500e+00, -8.7193e+00, -8.2337e+00, -3.4650e-01, -4.9441e-01,
# 8.3516e-03, -3.1114e-01, -9.9700e-01, -2.3471e-01, -2.7137e-01]
# input_normalization_modes: null
input_normalization_modes:
observation.state: min_max
observation.image: mean_std
# input_normalization_params: null
input_normalization_params:
observation.state:
min: [-1.9361e+00, -7.7640e-01, -7.7094e-01, -2.9709e+00, -8.5656e-01,
1.0764e+00, -1.2680e+00, 0.0000e+00, 0.0000e+00, -9.3448e+00,
-3.3828e+00, -3.8420e+00, -5.2553e+00, -3.4154e+00, -6.5082e+00,
-6.0500e+00, -8.7193e+00, -8.2337e+00, -3.4650e-01, -4.9441e-01,
8.3516e-03, -3.1114e-01, -9.9700e-01, -2.3471e-01, -2.7137e-01]
max: [ 0.8644, 1.4306, 1.8520, -0.7578, 0.9508, 3.4901, 1.9381, 0.0400,
0.0400, 5.0885, 4.7156, 7.9393, 7.9100, 2.9796, 5.7720, 4.7163,
7.8145, 9.7415, 0.2422, 0.4505, 0.6306, 0.2622, 1.0000, 0.5135,
0.4001]
# max: [ 0.8644, 1.4306, 1.8520, -0.7578, 0.9508, 3.4901, 1.9381, 0.0400,
# 0.0400, 5.0885, 4.7156, 7.9393, 7.9100, 2.9796, 5.7720, 4.7163,
# 7.8145, 9.7415, 0.2422, 0.4505, 0.6306, 0.2622, 1.0000, 0.5135,
# 0.4001]
observation.image:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
output_normalization_modes:
action: min_max
output_normalization_params:
action:
min: [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]
max: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
min: [-0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03]
max: [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03]
output_normalization_shapes:
action: [7]
@ -99,8 +100,8 @@ policy:
# discount: 0.99
discount: 0.80
temperature_init: 1.0
num_critics: 10 #10
num_subsample_critics: 2
num_critics: 2 #10
num_subsample_critics: null
critic_lr: 3e-4
actor_lr: 3e-4
temperature_lr: 3e-4
@ -111,7 +112,7 @@ policy:
actor_learner_config:
learner_host: "127.0.0.1"
learner_port: 50051
policy_parameters_push_frequency: 1
policy_parameters_push_frequency: 4
concurrency:
actor: 'processes'
learner: 'processes'
actor: 'threads'
learner: 'threads'

View File

@ -202,6 +202,7 @@ def initialize_offline_replay_buffer(
action_delta=cfg.env.wrapper.delta_action,
storage_device=storage_device,
optimize_memory=True,
capacity=cfg.training.offline_buffer_capacity,
)
return offline_replay_buffer

View File

@ -159,7 +159,7 @@ def make_maniskill(
env.unwrapped.metadata["render_fps"] = 20
env = ManiSkillCompat(env)
env = ManiSkillActionWrapper(env)
env = ManiSkillMultiplyActionWrapper(env, multiply_factor=1)
env = ManiSkillMultiplyActionWrapper(env, multiply_factor=0.03)
return env