Update readme & remove example 1 (#108)

Co-authored-by: Remi <re.cadene@gmail.com>
- Update instructions for installing the library
- Remove deprecated example 1 (as we are now only using `LeRobotDataset` since #91)
This commit is contained in:
Simon Alibert 2024-04-27 09:48:02 +02:00 committed by GitHub
parent fe2b9af64f
commit bf2eebb090
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 28 additions and 95 deletions

View File

@ -129,26 +129,34 @@ Follow these steps to start contributing:
🚨 **Do not** work on the `main` branch.
4. Instead of using `pip` directly, we use `poetry` for development purposes to easily track our dependencies.
4. for development, we use `poetry` instead of just `pip` to easily track our dependencies.
If you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.
Set up a development environment by running the following command in a conda or a virtual environment you've created for working on this library:
Install the project with dev dependencies and all environments:
```bash
poetry install --sync --with dev --all-extras
```
This command should be run when pulling code with and updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the dependencies.
To selectively install environments (for example aloha and pusht) use:
Set up a development environment with conda or miniconda:
```bash
poetry install --sync --with dev --extras "aloha pusht"
conda create -y -n lerobot-dev python=3.10 && conda activate lerobot-dev
```
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
```bash
poetry install --sync --extras "dev test"
```
You can also install the project with all its dependencies (including environments):
```bash
poetry install --sync --all-extras
```
> **Note:** If you don't install simulation environments with `--all-extras`, the tests that require them will be skipped when running the pytest suite locally. However, they *will* be tested in the CI. In general, we advise you to install everything and test locally before pushing.
Whichever command you chose to install the project (e.g. `poetry install --sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
The equivalent of `pip install some-package`, would just be:
```bash
poetry add some-package
```
When changes are made to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
```bash
poetry lock --no-update
```

View File

@ -10,7 +10,7 @@
<div align="center">
[![Tests](https://github.com/huggingface/lerobot/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/huggingface/lerobot/actions/workflows/test.yml?query=branch%3Amain)
[![Tests](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml/badge.svg?branch=main)](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml?query=branch%3Amain)
[![Coverage](https://codecov.io/gh/huggingface/lerobot/branch/main/graph/badge.svg?token=TODO)](https://codecov.io/gh/huggingface/lerobot)
[![Python versions](https://img.shields.io/pypi/pyversions/lerobot)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/huggingface/lerobot/blob/main/LICENSE)
@ -73,7 +73,7 @@ conda create -y -n lerobot python=3.10 && conda activate lerobot
Install 🤗 LeRobot:
```bash
python -m pip install .
pip install .
```
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
@ -83,7 +83,7 @@ For simulations, 🤗 LeRobot comes with gymnasium environments that can be inst
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
python -m pip install ".[aloha, pusht]"
pip install ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiments tracking, log in with

View File

@ -1,69 +0,0 @@
"""
This script demonstrates the visualization of various robotic datasets from Hugging Face hub.
It covers the steps from loading the datasets, filtering specific episodes, and converting the frame data to MP4 videos.
Importantly, the dataset format is agnostic to any deep learning library and doesn't require using `lerobot` functions.
It is compatible with pytorch, jax, numpy, etc.
As an example, this script saves frames of episode number 5 of the PushT dataset to a mp4 video and saves the result here:
`outputs/examples/1_visualize_hugging_face_datasets/episode_5.mp4`
This script supports several Hugging Face datasets, among which:
1. [Pusht](https://huggingface.co/datasets/lerobot/pusht)
2. [Xarm Lift Medium](https://huggingface.co/datasets/lerobot/xarm_lift_medium)
3. [Xarm Lift Medium Replay](https://huggingface.co/datasets/lerobot/xarm_lift_medium_replay)
4. [Xarm Push Medium](https://huggingface.co/datasets/lerobot/xarm_push_medium)
5. [Xarm Push Medium Replay](https://huggingface.co/datasets/lerobot/xarm_push_medium_replay)
6. [Aloha Sim Insertion Human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human)
7. [Aloha Sim Insertion Scripted](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_scripted)
8. [Aloha Sim Transfer Cube Human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human)
9. [Aloha Sim Transfer Cube Scripted](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_scripted)
To try a different Hugging Face dataset, you can replace this line:
```python
hf_dataset, fps = load_dataset("lerobot/pusht", split="train"), 10
```
by one of these:
```python
hf_dataset, fps = load_dataset("lerobot/xarm_lift_medium", split="train"), 15
hf_dataset, fps = load_dataset("lerobot/xarm_lift_medium_replay", split="train"), 15
hf_dataset, fps = load_dataset("lerobot/xarm_push_medium", split="train"), 15
hf_dataset, fps = load_dataset("lerobot/xarm_push_medium_replay", split="train"), 15
hf_dataset, fps = load_dataset("lerobot/aloha_sim_insertion_human", split="train"), 50
hf_dataset, fps = load_dataset("lerobot/aloha_sim_insertion_scripted", split="train"), 50
hf_dataset, fps = load_dataset("lerobot/aloha_sim_transfer_cube_human", split="train"), 50
hf_dataset, fps = load_dataset("lerobot/aloha_sim_transfer_cube_scripted", split="train"), 50
```
"""
# TODO(rcadene): remove this example file of using hf_dataset
from pathlib import Path
import imageio
from datasets import load_dataset
# TODO(rcadene): list available datasets on lerobot page using `datasets`
# download/load hugging face dataset in pyarrow format
hf_dataset, fps = load_dataset("lerobot/pusht", split="train", revision="v1.1"), 10
# display name of dataset and its features
# TODO(rcadene): update to make the print pretty
print(f"{hf_dataset=}")
print(f"{hf_dataset.features=}")
# display useful statistics about frames and episodes, which are sequences of frames from the same video
print(f"number of frames: {len(hf_dataset)=}")
print(f"number of episodes: {len(hf_dataset.unique('episode_index'))=}")
print(
f"average number of frames per episode: {len(hf_dataset) / len(hf_dataset.unique('episode_index')):.3f}"
)
# select the frames belonging to episode number 5
hf_dataset = hf_dataset.filter(lambda frame: frame["episode_index"] == 5)
# load all frames of episode 5 in RAM in PIL format
frames = hf_dataset["observation.image"]
# save episode frames to a mp4 video
Path("outputs/examples/1_load_hugging_face_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/1_load_hugging_face_dataset/episode_5.mp4", frames, fps=fps)

View File

@ -58,8 +58,8 @@ frames = [(frame * 255).type(torch.uint8) for frame in frames]
frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
# and finally save them to a mp4 video
Path("outputs/examples/2_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/2_load_lerobot_dataset/episode_5.mp4", frames, fps=dataset.fps)
Path("outputs/examples/1_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/1_load_lerobot_dataset/episode_5.mp4", frames, fps=dataset.fps)
# For many machine learning applications we need to load histories of past observations, or trajectorys of future actions. Our datasets can load previous and future frames for each key/modality,
# using timestamps differences with the current loaded frame. For instance:

View File

@ -16,24 +16,18 @@ def _run_script(path):
def test_example_1():
path = "examples/1_load_hugging_face_dataset.py"
path = "examples/1_load_lerobot_dataset.py"
_run_script(path)
assert Path("outputs/examples/1_load_hugging_face_dataset/episode_5.mp4").exists()
assert Path("outputs/examples/1_load_lerobot_dataset/episode_5.mp4").exists()
def test_example_2():
path = "examples/2_load_lerobot_dataset.py"
_run_script(path)
assert Path("outputs/examples/2_load_lerobot_dataset/episode_5.mp4").exists()
def test_examples_4_and_3():
def test_examples_3_and_2():
"""
Train a model with example 3, check the outputs.
Evaluate the trained model with example 2, check the outputs.
"""
path = "examples/4_train_policy.py"
path = "examples/3_train_policy.py"
with open(path) as file:
file_contents = file.read()
@ -55,7 +49,7 @@ def test_examples_4_and_3():
for file_name in ["model.pt", "config.yaml"]:
assert Path(f"outputs/train/example_pusht_diffusion/{file_name}").exists()
path = "examples/3_evaluate_pretrained_policy.py"
path = "examples/2_evaluate_pretrained_policy.py"
with open(path) as file:
file_contents = file.read()