Add add_frame, empty dataset creation

This commit is contained in:
Simon Alibert 2024-10-21 00:16:52 +02:00
parent 3b925c3dce
commit c1232a01e2
6 changed files with 114 additions and 33 deletions

View File

@ -13,7 +13,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
from pathlib import Path
@ -26,15 +25,17 @@ from datasets import load_dataset
from huggingface_hub import snapshot_download
from lerobot.common.datasets.compute_stats import aggregate_stats
from lerobot.common.datasets.image_writer import ImageWriter
from lerobot.common.datasets.utils import (
check_delta_timestamps,
check_timestamps_sync,
create_dataset_info,
create_empty_dataset_info,
get_delta_indices,
get_episode_data_index,
get_hub_safe_version,
hf_transform_to_torch,
load_metadata,
write_json,
)
from lerobot.common.datasets.video_utils import VideoFrame, decode_video_frames_torchvision
from lerobot.common.robot_devices.robots.utils import Robot
@ -55,6 +56,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
tolerance_s: float = 1e-4,
download_videos: bool = True,
video_backend: str | None = None,
image_writer: ImageWriter | None = None,
):
"""LeRobotDataset encapsulates 3 main things:
- metadata:
@ -156,6 +158,8 @@ class LeRobotDataset(torch.utils.data.Dataset):
self.tolerance_s = tolerance_s
self.download_videos = download_videos
self.video_backend = video_backend if video_backend is not None else "pyav"
self.image_writer = image_writer
self.episode_buffer = {}
self.delta_indices = None
# Load metadata
@ -296,9 +300,14 @@ class LeRobotDataset(torch.utils.data.Dataset):
@property
def num_samples(self) -> int:
"""Number of samples/frames."""
"""Number of samples/frames in selected episodes."""
return len(self.hf_dataset)
@property
def total_frames(self) -> int:
"""Total number of frames saved in this dataset."""
return self.info["total_frames"]
@property
def num_episodes(self) -> int:
"""Number of episodes selected."""
@ -423,10 +432,6 @@ class LeRobotDataset(torch.utils.data.Dataset):
return item
def write_info(self) -> None:
with open(self.root / "meta/info.json", "w") as f:
json.dump(self.info, f, indent=4, ensure_ascii=False)
def __repr__(self):
return (
f"{self.__class__.__name__}(\n"
@ -442,6 +447,49 @@ class LeRobotDataset(torch.utils.data.Dataset):
f")"
)
def _create_episode_buffer(self) -> dict:
# TODO(aliberts): Handle resume
return {
"chunk": self.total_chunks,
"episode_index": self.total_episodes,
"size": 0,
"frame_index": [],
"timestamp": [],
"next.done": [],
**{key: [] for key in self.keys},
}
def add_frame(self, frame: dict) -> None:
frame_index = self.episode_buffer["size"]
self.episode_buffer["frame_index"].append(frame_index)
self.episode_buffer["timestamp"].append(frame_index / self.fps)
self.episode_buffer["next.done"].append(False)
# Save all observed modalities except images
for key in self.keys:
self.episode_buffer[key].append(frame[key])
self.episode_buffer["size"] += 1
if self.image_writer is None:
return
# Save images
for cam_key in self.camera_keys:
img_path = self.image_writer.get_image_file_path(
episode_index=self.episode_buffer["episode_index"],
image_key=cam_key,
frame_index=frame_index,
return_str=False,
)
if frame_index == 0:
img_path.parent.mkdir(parents=True, exist_ok=True)
self.image_writer.async_save_image(
image=frame[cam_key],
file_path=img_path,
)
@classmethod
def create(
cls,
@ -450,24 +498,29 @@ class LeRobotDataset(torch.utils.data.Dataset):
robot: Robot,
root: Path | None = None,
tolerance_s: float = 1e-4,
image_writer: ImageWriter | None = None,
use_videos: bool = True,
) -> "LeRobotDataset":
"""Create a LeRobot Dataset from scratch in order to record data."""
obj = cls.__new__(cls)
obj.repo_id = repo_id
obj.root = root if root is not None else LEROBOT_HOME / repo_id
obj._version = CODEBASE_VERSION
obj.tolerance_s = tolerance_s
obj.image_writer = image_writer
obj.root.mkdir(exist_ok=True, parents=True)
obj.info = create_dataset_info(obj._version, fps, robot)
obj.write_info()
obj.fps = fps
if not all(cam.fps == fps for cam in robot.cameras):
if not all(cam.fps == fps for cam in robot.cameras.values()):
logging.warn(
f"Some cameras in your {robot.robot_type} robot don't have an fps matching the fps of your dataset."
"In this case, frames from lower fps cameras will be repeated to fill in the blanks"
)
obj.info = create_empty_dataset_info(obj._version, fps, robot, use_videos)
write_json(obj.info, obj.root / "meta/info.json")
# TODO(aliberts, rcadene, alexander-soare): Merge this with OnlineBuffer/DataBuffer
obj.episode_buffer = obj._create_episode_buffer()
# obj.episodes = None
# obj.image_transforms = None
# obj.delta_timestamps = None

View File

@ -75,6 +75,12 @@ def unflatten_dict(d, sep="/"):
return outdict
def write_json(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with open(fpath, "w") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
to torch tensors. Importantly, images are converted from PIL, which corresponds to
@ -146,7 +152,16 @@ def load_metadata(local_dir: Path) -> tuple[dict | list]:
return info, episode_dicts, stats, tasks
def create_dataset_info(codebase_version: str, fps: int, robot: Robot) -> dict:
def create_empty_dataset_info(codebase_version: str, fps: int, robot: Robot, use_videos: bool = True) -> dict:
shapes = {key: len(names) for key, names in robot.names.items()}
camera_shapes = {}
for key, cam in robot.cameras.items():
video_key = f"observation.images.{key}"
camera_shapes[video_key] = {
"width": cam.width,
"height": cam.height,
"channels": cam.channels,
}
return {
"codebase_version": codebase_version,
"data_path": DEFAULT_PARQUET_PATH,
@ -159,12 +174,12 @@ def create_dataset_info(codebase_version: str, fps: int, robot: Robot) -> dict:
"chunks_size": DEFAULT_CHUNK_SIZE,
"fps": fps,
"splits": {},
# "keys": keys,
# "video_keys": video_keys,
# "image_keys": image_keys,
# "shapes": {**sequence_shapes, **video_shapes, **image_shapes},
# "names": names,
# "videos": {"videos_path": DEFAULT_VIDEO_PATH} if video_keys else None,
"keys": list(robot.names),
"video_keys": list(camera_shapes) if use_videos else [],
"image_keys": [] if use_videos else list(camera_shapes),
"shapes": {**shapes, **camera_shapes},
"names": robot.names,
"videos": {"videos_path": DEFAULT_VIDEO_PATH} if use_videos else None,
}
@ -270,6 +285,7 @@ def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dic
return delta_indices
# TODO(aliberts): remove
def load_previous_and_future_frames(
item: dict[str, torch.Tensor],
hf_dataset: datasets.Dataset,
@ -363,6 +379,7 @@ def load_previous_and_future_frames(
return item
# TODO(aliberts): remove
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
@ -417,6 +434,7 @@ def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torc
return episode_data_index
# TODO(aliberts): remove
def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
"""Reset the `episode_index` of the provided HuggingFace Dataset.
@ -454,7 +472,7 @@ def cycle(iterable):
iterator = iter(iterable)
def create_branch(repo_id, *, branch: str, repo_type: str | None = None):
def create_branch(repo_id, *, branch: str, repo_type: str | None = None) -> None:
"""Create a branch on a existing Hugging Face repo. Delete the branch if it already
exists before creating it.
"""

View File

@ -192,6 +192,7 @@ class OpenCVCameraConfig:
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
@ -201,6 +202,8 @@ class OpenCVCameraConfig:
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
@ -268,6 +271,7 @@ class OpenCVCamera:
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.mock = config.mock

View File

@ -15,7 +15,8 @@ import torch
import tqdm
from termcolor import colored
from lerobot.common.datasets.populate_dataset import add_frame, safe_stop_image_writer
from lerobot.common.datasets.image_writer import safe_stop_image_writer
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.policies.factory import make_policy
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robot_devices.utils import busy_wait
@ -227,7 +228,7 @@ def control_loop(
control_time_s=None,
teleoperate=False,
display_cameras=False,
dataset=None,
dataset: LeRobotDataset | None = None,
events=None,
policy=None,
device=None,
@ -268,7 +269,8 @@ def control_loop(
action = {"action": action}
if dataset is not None:
add_frame(dataset, observation, action)
frame = {**observation, **action}
dataset.add_frame(frame)
if display_cameras and not is_headless():
image_keys = [key for key in observation if "image" in key]

View File

@ -349,6 +349,13 @@ class ManipulatorRobot:
self.is_connected = False
self.logs = {}
action_names = [f"{arm}_{motor}" for arm, bus in self.leader_arms.items() for motor in bus.motors]
state_names = [f"{arm}_{motor}" for arm, bus in self.follower_arms.items() for motor in bus.motors]
self.names = {
"action": action_names,
"observation.state": state_names,
}
@property
def has_camera(self):
return len(self.cameras) > 0

View File

@ -105,11 +105,11 @@ from pathlib import Path
from typing import List
# from safetensors.torch import load_file, save_file
from lerobot.common.datasets.image_writer import ImageWriter
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.populate_dataset import (
create_lerobot_dataset,
delete_current_episode,
init_dataset,
save_current_episode,
)
from lerobot.common.robot_devices.control_utils import (
@ -233,16 +233,12 @@ def record(
# Create empty dataset or load existing saved episodes
sanity_check_dataset_name(repo_id, policy)
dataset = init_dataset(
repo_id,
root,
force_override,
fps,
video,
write_images=robot.has_camera,
image_writer = ImageWriter(
write_dir=root,
num_image_writer_processes=num_image_writer_processes,
num_image_writer_threads=num_image_writer_threads_per_camera * robot.num_cameras,
)
dataset = LeRobotDataset.create(repo_id, fps, robot, image_writer=image_writer)
if not robot.is_connected:
robot.connect()
@ -260,8 +256,9 @@ def record(
if has_method(robot, "teleop_safety_stop"):
robot.teleop_safety_stop()
recorded_episodes = 0
while True:
if dataset["num_episodes"] >= num_episodes:
if recorded_episodes >= num_episodes:
break
episode_index = dataset["num_episodes"]