This commit is contained in:
Simon Alibert 2025-04-04 20:26:03 +02:00 committed by GitHub
commit c22d538866
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
113 changed files with 7822 additions and 4036 deletions

View File

@ -80,7 +80,7 @@ python lerobot/scripts/configure_motor.py \
--brand dynamixel \
--model xl330-m288 \
--baudrate 1000000 \
--ID 1
--id 1
```
Then unplug your first motor and plug the second motor and set its ID to 2.
@ -90,7 +90,7 @@ python lerobot/scripts/configure_motor.py \
--brand dynamixel \
--model xl330-m288 \
--baudrate 1000000 \
--ID 2
--id 2
```
Redo the process for all your motors until ID 6.

View File

@ -0,0 +1,4 @@
from .camera import Camera
from .configs import CameraConfig
__all__ = ["Camera", "CameraConfig"]

View File

@ -0,0 +1,25 @@
import abc
import numpy as np
class Camera(abc.ABC):
@abc.abstractmethod
def connect(self):
pass
@abc.abstractmethod
def read(self, temporary_color: str | None = None) -> np.ndarray:
pass
@abc.abstractmethod
def async_read(self) -> np.ndarray:
pass
@abc.abstractmethod
def disconnect(self):
pass
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@ -0,0 +1,11 @@
import abc
from dataclasses import dataclass
import draccus
@dataclass
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)

View File

@ -0,0 +1,4 @@
from .camera_realsense import RealSenseCamera
from .configuration_realsense import RealSenseCameraConfig
__all__ = ["RealSenseCamera", "RealSenseCameraConfig"]

View File

@ -31,14 +31,15 @@ from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.robot_utils import (
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
from ..camera import Camera
from .configuration_realsense import RealSenseCameraConfig
SERIAL_NUMBER_INDEX = 1
@ -108,13 +109,11 @@ def save_images_from_cameras(
cameras = []
for cam_sn in serial_numbers:
print(f"{cam_sn=}")
config = IntelRealSenseCameraConfig(
serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock
)
camera = IntelRealSenseCamera(config)
config = RealSenseCameraConfig(serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock)
camera = RealSenseCamera(config)
camera.connect()
print(
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
f"RealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
@ -166,11 +165,11 @@ def save_images_from_cameras(
camera.disconnect()
class IntelRealSenseCamera:
class RealSenseCamera(Camera):
"""
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
The RealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
- can also be instantiated with the camera's name — if it's unique using IntelRealSenseCamera.init_from_name(),
- can also be instantiated with the camera's name — if it's unique using RealSenseCamera.init_from_name(),
- depth map can be returned.
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
@ -178,15 +177,15 @@ class IntelRealSenseCamera:
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
```
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
When an RealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
of the given camera will be used.
Example of instantiating with a serial number:
```python
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
from lerobot.common.robot_devices.cameras.configs import RealSenseCameraConfig
config = IntelRealSenseCameraConfig(serial_number=128422271347)
camera = IntelRealSenseCamera(config)
config = RealSenseCameraConfig(serial_number=128422271347)
camera = RealSenseCamera(config)
camera.connect()
color_image = camera.read()
# when done using the camera, consider disconnecting
@ -195,21 +194,21 @@ class IntelRealSenseCamera:
Example of instantiating with a name if it's unique:
```
config = IntelRealSenseCameraConfig(name="Intel RealSense D405")
config = RealSenseCameraConfig(name="Intel RealSense D405")
```
Example of changing default fps, width, height and color_mode:
```python
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
config = RealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
# Note: might error out upon `camera.connect()` if these settings are not compatible with the camera
```
Example of returning depth:
```python
config = IntelRealSenseCameraConfig(serial_number=128422271347, use_depth=True)
camera = IntelRealSenseCamera(config)
config = RealSenseCameraConfig(serial_number=128422271347, use_depth=True)
camera = RealSenseCamera(config)
camera.connect()
color_image, depth_map = camera.read()
```
@ -217,7 +216,7 @@ class IntelRealSenseCamera:
def __init__(
self,
config: IntelRealSenseCameraConfig,
config: RealSenseCameraConfig,
):
self.config = config
if config.name is not None:
@ -282,9 +281,7 @@ class IntelRealSenseCamera:
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is already connected."
)
raise DeviceAlreadyConnectedError(f"RealSenseCamera({self.serial_number}) is already connected.")
if self.mock:
import tests.cameras.mock_pyrealsense2 as rs
@ -330,7 +327,7 @@ class IntelRealSenseCamera:
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
)
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
raise OSError(f"Can't access RealSenseCamera({self.serial_number}).")
color_stream = profile.get_stream(rs.stream.color)
color_profile = color_stream.as_video_stream_profile()
@ -342,15 +339,15 @@ class IntelRealSenseCamera:
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
f"Can't set {self.fps=} for RealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
)
if self.capture_width is not None and self.capture_width != actual_width:
raise OSError(
f"Can't set {self.capture_width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
f"Can't set {self.capture_width=} for RealSenseCamera({self.serial_number}). Actual value is {actual_width}."
)
if self.capture_height is not None and self.capture_height != actual_height:
raise OSError(
f"Can't set {self.capture_height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
f"Can't set {self.capture_height=} for RealSenseCamera({self.serial_number}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
@ -370,8 +367,8 @@ class IntelRealSenseCamera:
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.mock:
@ -386,7 +383,7 @@ class IntelRealSenseCamera:
color_frame = frame.get_color_frame()
if not color_frame:
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
raise OSError(f"Can't capture color image from RealSenseCamera({self.serial_number}).")
color_image = np.asanyarray(color_frame.get_data())
@ -418,7 +415,7 @@ class IntelRealSenseCamera:
if self.use_depth:
depth_frame = frame.get_depth_frame()
if not depth_frame:
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
raise OSError(f"Can't capture depth image from RealSenseCamera({self.serial_number}).")
depth_map = np.asanyarray(depth_frame.get_data())
@ -445,8 +442,8 @@ class IntelRealSenseCamera:
def async_read(self):
"""Access the latest color image"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is None:
@ -472,8 +469,8 @@ class IntelRealSenseCamera:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None and self.thread.is_alive():
@ -495,14 +492,14 @@ class IntelRealSenseCamera:
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
description="Save a few frames using `RealSenseCamera` for all cameras connected to the computer, or a selected subset."
)
parser.add_argument(
"--serial-numbers",
type=int,
nargs="*",
default=None,
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
help="List of serial numbers used to instantiate the `RealSenseCamera`. If not provided, find and use all available camera indices.",
)
parser.add_argument(
"--fps",

View File

@ -12,67 +12,24 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass
import draccus
@dataclass
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@CameraConfig.register_subclass("opencv")
@dataclass
class OpenCVCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
OpenCVCameraConfig(0, 30, 640, 480)
OpenCVCameraConfig(0, 60, 640, 480)
OpenCVCameraConfig(0, 90, 640, 480)
OpenCVCameraConfig(0, 30, 1280, 720)
```
"""
camera_index: int
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
from ..configs import CameraConfig
@CameraConfig.register_subclass("intelrealsense")
@dataclass
class IntelRealSenseCameraConfig(CameraConfig):
class RealSenseCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
IntelRealSenseCameraConfig(128422271347, 30, 640, 480)
IntelRealSenseCameraConfig(128422271347, 60, 640, 480)
IntelRealSenseCameraConfig(128422271347, 90, 640, 480)
IntelRealSenseCameraConfig(128422271347, 30, 1280, 720)
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
RealSenseCameraConfig(128422271347, 30, 640, 480)
RealSenseCameraConfig(128422271347, 60, 640, 480)
RealSenseCameraConfig(128422271347, 90, 640, 480)
RealSenseCameraConfig(128422271347, 30, 1280, 720)
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
```
"""

View File

@ -0,0 +1,4 @@
from .camera_opencv import OpenCVCamera
from .configuration_opencv import OpenCVCameraConfig
__all__ = ["OpenCVCamera", "OpenCVCameraConfig"]

View File

@ -29,14 +29,15 @@ from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.robot_utils import (
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
from ..camera import Camera
from .configuration_opencv import OpenCVCameraConfig
# The maximum opencv device index depends on your operating system. For instance,
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
@ -190,7 +191,7 @@ def save_images_from_cameras(
print(f"Images have been saved to {images_dir}")
class OpenCVCamera:
class OpenCVCamera(Camera):
"""
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
@ -283,7 +284,7 @@ class OpenCVCamera:
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
raise DeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
if self.mock:
import tests.cameras.mock_cv2 as cv2
@ -375,7 +376,7 @@ class OpenCVCamera:
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
@ -432,7 +433,7 @@ class OpenCVCamera:
def async_read(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
@ -454,7 +455,7 @@ class OpenCVCamera:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)

View File

@ -0,0 +1,38 @@
from dataclasses import dataclass
from ..configs import CameraConfig
@CameraConfig.register_subclass("opencv")
@dataclass
class OpenCVCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
OpenCVCameraConfig(0, 30, 640, 480)
OpenCVCameraConfig(0, 60, 640, 480)
OpenCVCameraConfig(0, 90, 640, 480)
OpenCVCameraConfig(0, 30, 1280, 720)
```
"""
camera_index: int
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")

View File

@ -0,0 +1,21 @@
from .camera import Camera
from .configs import CameraConfig
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[str, Camera]:
cameras = {}
for key, cfg in camera_configs.items():
if cfg.type == "opencv":
from .opencv import OpenCVCamera
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from .intel.camera_realsense import RealSenseCamera
cameras[key] = RealSenseCamera(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return cameras

View File

@ -17,12 +17,15 @@ from pathlib import Path
from huggingface_hub.constants import HF_HOME
OBS_ENV = "observation.environment_state"
OBS_ROBOT = "observation.state"
OBS_ENV_STATE = "observation.environment_state"
OBS_STATE = "observation.state"
OBS_IMAGE = "observation.image"
OBS_IMAGES = "observation.images"
ACTION = "action"
ROBOTS = "robots"
TELEOPERATORS = "teleoperators"
# files & directories
CHECKPOINTS_DIR = "checkpoints"
LAST_CHECKPOINT_LINK = "last"
@ -34,12 +37,16 @@ OPTIMIZER_STATE = "optimizer_state.safetensors"
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
SCHEDULER_STATE = "scheduler_state.json"
# cache dir
default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
if "LEROBOT_HOME" in os.environ:
raise ValueError(
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
)
# cache dir
default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
# calibration dir
default_calibration_path = HF_LEROBOT_HOME / ".calibration"
HF_LEROBOT_CALIBRATION = Path(os.getenv("HF_LEROBOT_CALIBRATION", default_calibration_path)).expanduser()

View File

@ -72,7 +72,7 @@ from lerobot.common.datasets.video_utils import (
get_safe_default_codec,
get_video_info,
)
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robots.utils import Robot
CODEBASE_VERSION = "v2.1"

View File

@ -40,7 +40,7 @@ from lerobot.common.datasets.backward_compatibility import (
BackwardCompatibilityError,
ForwardCompatibilityError,
)
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robots.utils import Robot
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature

View File

@ -27,7 +27,7 @@ from textwrap import dedent
from lerobot import available_datasets
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset
from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
from lerobot.common.robots.aloha.configuration_aloha import AlohaRobotConfig
LOCAL_DIR = Path("data/")

View File

@ -141,8 +141,8 @@ from lerobot.common.datasets.video_utils import (
get_image_pixel_channels,
get_video_info,
)
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.common.robot_devices.robots.utils import make_robot_config
from lerobot.common.robots import RobotConfig
from lerobot.common.robots.utils import make_robot_config
V16 = "v1.6"
V20 = "v2.0"

View File

@ -17,7 +17,7 @@ from dataclasses import dataclass, field
import draccus
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
from lerobot.common.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
from lerobot.configs.types import FeatureType, PolicyFeature
@ -53,7 +53,7 @@ class AlohaEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"agent_pos": OBS_STATE,
"top": f"{OBS_IMAGE}.top",
"pixels/top": f"{OBS_IMAGES}.top",
}
@ -94,8 +94,8 @@ class PushtEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"environment_state": OBS_ENV,
"agent_pos": OBS_STATE,
"environment_state": OBS_ENV_STATE,
"pixels": OBS_IMAGE,
}
)
@ -136,7 +136,7 @@ class XarmEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"agent_pos": OBS_STATE,
"pixels": OBS_IMAGE,
}
)

17
lerobot/common/errors.py Normal file
View File

@ -0,0 +1,17 @@
class DeviceNotConnectedError(ConnectionError):
"""Exception raised when the device is not connected."""
def __init__(self, message="This device is not connected. Try calling `connect()` first."):
self.message = message
super().__init__(self.message)
class DeviceAlreadyConnectedError(ConnectionError):
"""Exception raised when the device is already connected."""
def __init__(
self,
message="This device is already connected. Try not calling `connect()` twice.",
):
self.message = message
super().__init__(self.message)

View File

@ -0,0 +1 @@
from .motors_bus import Motor, MotorCalibration, MotorNormMode, MotorsBus

View File

@ -0,0 +1,3 @@
from .dynamixel import DriveMode, DynamixelMotorsBus, OperatingMode, TorqueMode
from .dynamixel_calibration import run_arm_calibration
from .tables import *

View File

@ -0,0 +1,194 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO(aliberts): Should we implement FastSyncRead/Write?
# https://github.com/ROBOTIS-GIT/DynamixelSDK/pull/643
# https://github.com/ROBOTIS-GIT/DynamixelSDK/releases/tag/3.8.2
# https://emanual.robotis.com/docs/en/dxl/protocol2/#fast-sync-read-0x8a
# -> Need to check compatibility across models
import logging
from copy import deepcopy
from enum import Enum
from lerobot.common.utils.encoding_utils import decode_twos_complement, encode_twos_complement
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value
from .tables import (
AVAILABLE_BAUDRATES,
MODEL_BAUDRATE_TABLE,
MODEL_CONTROL_TABLE,
MODEL_NUMBER,
MODEL_RESOLUTION,
)
PROTOCOL_VERSION = 2.0
BAUDRATE = 1_000_000
DEFAULT_TIMEOUT_MS = 1000
NORMALIZATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
logger = logging.getLogger(__name__)
class OperatingMode(Enum):
# DYNAMIXEL only controls current(torque) regardless of speed and position. This mode is ideal for a
# gripper or a system that only uses current(torque) control or a system that has additional
# velocity/position controllers.
CURRENT = 0
# This mode controls velocity. This mode is identical to the Wheel Mode(endless) from existing DYNAMIXEL.
# This mode is ideal for wheel-type robots.
VELOCITY = 1
# This mode controls position. This mode is identical to the Joint Mode from existing DYNAMIXEL. Operating
# position range is limited by the Max Position Limit(48) and the Min Position Limit(52). This mode is
# ideal for articulated robots that each joint rotates less than 360 degrees.
POSITION = 3
# This mode controls position. This mode is identical to the Multi-turn Position Control from existing
# DYNAMIXEL. 512 turns are supported(-256[rev] ~ 256[rev]). This mode is ideal for multi-turn wrists or
# conveyer systems or a system that requires an additional reduction gear. Note that Max Position
# Limit(48), Min Position Limit(52) are not used on Extended Position Control Mode.
EXTENDED_POSITION = 4
# This mode controls both position and current(torque). Up to 512 turns are supported (-256[rev] ~
# 256[rev]). This mode is ideal for a system that requires both position and current control such as
# articulated robots or grippers.
CURRENT_POSITION = 5
# This mode directly controls PWM output. (Voltage Control Mode)
PWM = 16
class DriveMode(Enum):
NON_INVERTED = 0
INVERTED = 1
class TorqueMode(Enum):
ENABLED = 1
DISABLED = 0
class DynamixelMotorsBus(MotorsBus):
"""
The Dynamixel implementation for a MotorsBus. It relies on the python dynamixel sdk to communicate with
the motors. For more info, see the Dynamixel SDK Documentation:
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20
"""
available_baudrates = deepcopy(AVAILABLE_BAUDRATES)
default_timeout = DEFAULT_TIMEOUT_MS
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
model_number_table = deepcopy(MODEL_NUMBER)
model_resolution_table = deepcopy(MODEL_RESOLUTION)
normalization_required = deepcopy(NORMALIZATION_REQUIRED)
def __init__(
self,
port: str,
motors: dict[str, Motor],
calibration: dict[str, MotorCalibration] | None = None,
):
super().__init__(port, motors, calibration)
import dynamixel_sdk as dxl
self.port_handler = dxl.PortHandler(self.port)
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
self.sync_reader = dxl.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
self.sync_writer = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
self._comm_success = dxl.COMM_SUCCESS
self._no_error = 0x00
def configure_motors(self) -> None:
# By default, Dynamixel motors have a 500µs delay response time (corresponding to a value of 250 on
# the 'Return_Delay_Time' address). We ensure this is reduced to the minimum of 2µs (value of 0).
for id_ in self.ids:
self.write("Return_Delay_Time", id_, 0)
def _disable_torque(self, motors: list[NameOrID]) -> None:
for motor in motors:
self.write("Torque_Enable", motor, TorqueMode.DISABLED.value)
def _enable_torque(self, motors: list[NameOrID]) -> None:
for motor in motors:
self.write("Torque_Enable", motor, TorqueMode.ENABLED.value)
def _encode_value(self, value: int, data_name: str | None = None, n_bytes: int | None = None) -> int:
return encode_twos_complement(value, n_bytes)
def _decode_value(self, value: int, data_name: str | None = None, n_bytes: int | None = None) -> int:
return decode_twos_complement(value, n_bytes)
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
"""
On Dynamixel Motors:
Present_Position = Actual_Position + Homing_Offset
"""
half_turn_homings = {}
for motor, pos in positions.items():
model = self._get_motor_model(motor)
max_res = self.model_resolution_table[model] - 1
half_turn_homings[motor] = int(max_res / 2) - pos
return half_turn_homings
@staticmethod
def _split_int_to_bytes(value: int, n_bytes: int) -> list[int]:
# Validate input
if value < 0:
raise ValueError(f"Negative values are not allowed: {value}")
max_value = {1: 0xFF, 2: 0xFFFF, 4: 0xFFFFFFFF}.get(n_bytes)
if max_value is None:
raise NotImplementedError(f"Unsupported byte size: {n_bytes}. Expected [1, 2, 4].")
if value > max_value:
raise ValueError(f"Value {value} exceeds the maximum for {n_bytes} bytes ({max_value}).")
import dynamixel_sdk as dxl
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if n_bytes == 1:
data = [value]
elif n_bytes == 2:
data = [dxl.DXL_LOBYTE(value), dxl.DXL_HIBYTE(value)]
elif n_bytes == 4:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
]
return data
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
for n_try in range(1 + num_retry):
data_list, comm = self.packet_handler.broadcastPing(self.port_handler)
if self._is_comm_success(comm):
break
logger.debug(f"Broadcast failed on port '{self.port}' ({n_try=})")
logger.debug(self.packet_handler.getTxRxResult(comm))
if not self._is_comm_success(comm):
if raise_on_error:
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
return data_list if data_list else None
return {id_: data[0] for id_, data in data_list.items()}

View File

@ -17,12 +17,9 @@
import numpy as np
from lerobot.common.robot_devices.motors.dynamixel import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
from ..motors_bus import MotorNormMode, MotorsBus
from .dynamixel import TorqueMode
from .tables import MODEL_RESOLUTION
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
@ -49,6 +46,17 @@ def apply_drive_mode(position, drive_mode):
return position
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
"""
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
def compute_nearest_rounded_position(position, models):
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
@ -89,11 +97,11 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.models)
homing_offset = zero_target_pos - zero_nearest_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
@ -107,7 +115,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
@ -116,7 +124,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.models)
homing_offset = rotated_target_pos - rotated_nearest_pos
print("\nMove arm to rest position")
@ -125,13 +133,13 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
calib_mode = [MotorNormMode.DEGREE.name] * len(arm.names)
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
if robot_type in ["aloha"] and "gripper" in arm.names:
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
calib_idx = arm.motor_names.index("gripper")
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
calib_idx = arm.names.index("gripper")
calib_mode[calib_idx] = MotorNormMode.LINEAR.name
calib_data = {
"homing_offset": homing_offset.tolist(),
@ -139,6 +147,6 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_mode,
"motor_names": arm.motor_names,
"motor_names": arm.names,
}
return calib_data

View File

@ -0,0 +1,141 @@
# data_name: (address, size_byte)
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table
X_SERIES_CONTROL_TABLE = {
"Model_Number": (0, 2),
"Model_Information": (2, 4),
"Firmware_Version": (6, 1),
"ID": (7, 1),
"Baud_Rate": (8, 1),
"Return_Delay_Time": (9, 1),
"Drive_Mode": (10, 1),
"Operating_Mode": (11, 1),
"Secondary_ID": (12, 1),
"Protocol_Type": (13, 1),
"Homing_Offset": (20, 4),
"Moving_Threshold": (24, 4),
"Temperature_Limit": (31, 1),
"Max_Voltage_Limit": (32, 2),
"Min_Voltage_Limit": (34, 2),
"PWM_Limit": (36, 2),
"Current_Limit": (38, 2),
"Acceleration_Limit": (40, 4),
"Velocity_Limit": (44, 4),
"Max_Position_Limit": (48, 4),
"Min_Position_Limit": (52, 4),
"Shutdown": (63, 1),
"Torque_Enable": (64, 1),
"LED": (65, 1),
"Status_Return_Level": (68, 1),
"Registered_Instruction": (69, 1),
"Hardware_Error_Status": (70, 1),
"Velocity_I_Gain": (76, 2),
"Velocity_P_Gain": (78, 2),
"Position_D_Gain": (80, 2),
"Position_I_Gain": (82, 2),
"Position_P_Gain": (84, 2),
"Feedforward_2nd_Gain": (88, 2),
"Feedforward_1st_Gain": (90, 2),
"Bus_Watchdog": (98, 1),
"Goal_PWM": (100, 2),
"Goal_Current": (102, 2),
"Goal_Velocity": (104, 4),
"Profile_Acceleration": (108, 4),
"Profile_Velocity": (112, 4),
"Goal_Position": (116, 4),
"Realtime_Tick": (120, 2),
"Moving": (122, 1),
"Moving_Status": (123, 1),
"Present_PWM": (124, 2),
"Present_Current": (126, 2),
"Present_Velocity": (128, 4),
"Present_Position": (132, 4),
"Velocity_Trajectory": (136, 4),
"Position_Trajectory": (140, 4),
"Present_Input_Voltage": (144, 2),
"Present_Temperature": (146, 1),
}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#baud-rate8
X_SERIES_BAUDRATE_TABLE = {
0: 9_600,
1: 57_600,
2: 115_200,
3: 1_000_000,
4: 2_000_000,
5: 3_000_000,
6: 4_000_000,
}
# {model: model_resolution}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#specifications
MODEL_RESOLUTION = {
"x_series": 4096,
"xl330-m077": 4096,
"xl330-m288": 4096,
"xl430-w250": 4096,
"xm430-w350": 4096,
"xm540-w270": 4096,
"xc430-w150": 4096,
}
# {model: model_number}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table-of-eeprom-area
MODEL_NUMBER = {
"xl330-m077": 1190,
"xl330-m288": 1200,
"xl430-w250": 1060,
"xm430-w350": 1020,
"xm540-w270": 1120,
"xc430-w150": 1070,
}
# {model: available_operating_modes}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#operating-mode11
MODEL_OPERATING_MODES = {
"xl330-m077": [0, 1, 3, 4, 5, 16],
"xl330-m288": [0, 1, 3, 4, 5, 16],
"xl430-w250": [1, 3, 4, 16],
"xm430-w350": [0, 1, 3, 4, 5, 16],
"xm540-w270": [0, 1, 3, 4, 5, 16],
"xc430-w150": [1, 3, 4, 16],
}
MODEL_CONTROL_TABLE = {
"x_series": X_SERIES_CONTROL_TABLE,
"xl330-m077": X_SERIES_CONTROL_TABLE,
"xl330-m288": X_SERIES_CONTROL_TABLE,
"xl430-w250": X_SERIES_CONTROL_TABLE,
"xm430-w350": X_SERIES_CONTROL_TABLE,
"xm540-w270": X_SERIES_CONTROL_TABLE,
"xc430-w150": X_SERIES_CONTROL_TABLE,
}
MODEL_BAUDRATE_TABLE = {
"x_series": X_SERIES_BAUDRATE_TABLE,
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
}
AVAILABLE_BAUDRATES = [
9_600,
19_200,
38_400,
57_600,
115_200,
230_400,
460_800,
500_000,
576_000,
921_600,
1_000_000,
1_152_000,
2_000_000,
2_500_000,
3_000_000,
3_500_000,
4_000_000,
]

View File

@ -0,0 +1,2 @@
from .feetech import DriveMode, FeetechMotorsBus, OperatingMode, TorqueMode
from .tables import *

View File

@ -0,0 +1,280 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from copy import deepcopy
from enum import Enum
from pprint import pformat
from lerobot.common.utils.encoding_utils import decode_sign_magnitude, encode_sign_magnitude
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value
from .tables import (
AVAILABLE_BAUDRATES,
ENCODINGS,
MODEL_BAUDRATE_TABLE,
MODEL_CONTROL_TABLE,
MODEL_NUMBER,
MODEL_RESOLUTION,
NORMALIZATION_REQUIRED,
)
PROTOCOL_VERSION = 0
BAUDRATE = 1_000_000
DEFAULT_TIMEOUT_MS = 1000
logger = logging.getLogger(__name__)
class OperatingMode(Enum):
# position servo mode
POSITION = 0
# The motor is in constant speed mode, which is controlled by parameter 0x2e, and the highest bit 15 is
# the direction bit
VELOCITY = 1
# PWM open-loop speed regulation mode, with parameter 0x2c running time parameter control, bit11 as
# direction bit
PWM = 2
# In step servo mode, the number of step progress is represented by parameter 0x2a, and the highest bit 15
# is the direction bit
STEP = 3
class DriveMode(Enum):
NON_INVERTED = 0
INVERTED = 1
class TorqueMode(Enum):
ENABLED = 1
DISABLED = 0
def patch_setPacketTimeout(self, packet_length): # noqa: N802
"""
HACK: This patches the PortHandler behavior to set the correct packet timeouts.
It fixes https://gitee.com/ftservo/SCServoSDK/issues/IBY2S6
The bug is fixed on the official Feetech SDK repo (https://gitee.com/ftservo/FTServo_Python)
but because that version is not published on PyPI, we rely on the (unofficial) on that is, which needs
patching.
"""
self.packet_start_time = self.getCurrentTime()
self.packet_timeout = (self.tx_time_per_byte * packet_length) + (self.tx_time_per_byte * 3.0) + 50
class FeetechMotorsBus(MotorsBus):
"""
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on the
python feetech sdk to communicate with the motors, which is itself based on the dynamixel sdk.
"""
available_baudrates = deepcopy(AVAILABLE_BAUDRATES)
default_timeout = DEFAULT_TIMEOUT_MS
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
model_number_table = deepcopy(MODEL_NUMBER)
model_resolution_table = deepcopy(MODEL_RESOLUTION)
normalization_required = deepcopy(NORMALIZATION_REQUIRED)
# Feetech specific
encodings = deepcopy(ENCODINGS)
def __init__(
self,
port: str,
motors: dict[str, Motor],
calibration: dict[str, MotorCalibration] | None = None,
):
super().__init__(port, motors, calibration)
import scservo_sdk as scs
self.port_handler = scs.PortHandler(self.port)
# HACK: monkeypatch
self.port_handler.setPacketTimeout = patch_setPacketTimeout.__get__(
self.port_handler, scs.PortHandler
)
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
self.sync_reader = scs.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
self.sync_writer = scs.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
self._comm_success = scs.COMM_SUCCESS
self._no_error = 0x00
def configure_motors(self) -> None:
# By default, Feetech motors have a 500µs delay response time (corresponding to a value of 250 on the
# 'Return_Delay' address). We ensure this is reduced to the minimum of 2µs (value of 0).
for id_ in self.ids:
self.write("Return_Delay_Time", id_, 0)
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
"""
On Feetech Motors:
Present_Position = Actual_Position - Homing_Offset
"""
half_turn_homings = {}
for motor, pos in positions.items():
model = self._get_motor_model(motor)
max_res = self.model_resolution_table[model] - 1
half_turn_homings[motor] = pos - int(max_res / 2)
return half_turn_homings
def _disable_torque(self, motors: list[NameOrID]) -> None:
for motor in motors:
self.write("Torque_Enable", motor, TorqueMode.DISABLED.value)
self.write("Lock", motor, 0)
def _enable_torque(self, motors: list[NameOrID]) -> None:
for motor in motors:
self.write("Torque_Enable", motor, TorqueMode.ENABLED.value)
self.write("Lock", motor, 1)
def _encode_value(self, value: int, data_name: str | None = None, n_bytes: int | None = None) -> int:
sign_bit = self.encodings.get(data_name)
return encode_sign_magnitude(value, sign_bit) if sign_bit is not None else value
def _decode_value(self, value: int, data_name: str | None = None, n_bytes: int | None = None) -> int:
sign_bit = self.encodings.get(data_name)
return decode_sign_magnitude(value, sign_bit) if sign_bit is not None else value
@staticmethod
def _split_int_to_bytes(value: int, n_bytes: int) -> list[int]:
# Validate input
if value < 0:
raise ValueError(f"Negative values are not allowed: {value}")
max_value = {1: 0xFF, 2: 0xFFFF, 4: 0xFFFFFFFF}.get(n_bytes)
if max_value is None:
raise NotImplementedError(f"Unsupported byte size: {n_bytes}. Expected [1, 2, 4].")
if value > max_value:
raise ValueError(f"Value {value} exceeds the maximum for {n_bytes} bytes ({max_value}).")
import scservo_sdk as scs
if n_bytes == 1:
data = [value]
elif n_bytes == 2:
data = [scs.SCS_LOBYTE(value), scs.SCS_HIBYTE(value)]
elif n_bytes == 4:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
]
return data
def _broadcast_ping(self) -> tuple[dict[int, int], int]:
import scservo_sdk as scs
data_list = {}
status_length = 6
rx_length = 0
wait_length = status_length * scs.MAX_ID
txpacket = [0] * 6
tx_time_per_byte = (1000.0 / self.port_handler.getBaudRate()) * 10.0
txpacket[scs.PKT_ID] = scs.BROADCAST_ID
txpacket[scs.PKT_LENGTH] = 2
txpacket[scs.PKT_INSTRUCTION] = scs.INST_PING
result = self.packet_handler.txPacket(self.port_handler, txpacket)
if result != scs.COMM_SUCCESS:
self.port_handler.is_using = False
return data_list, result
# set rx timeout
self.port_handler.setPacketTimeoutMillis((wait_length * tx_time_per_byte) + (3.0 * scs.MAX_ID) + 16.0)
rxpacket = []
while True:
rxpacket += self.port_handler.readPort(wait_length - rx_length)
rx_length = len(rxpacket)
if self.port_handler.isPacketTimeout(): # or rx_length >= wait_length
break
self.port_handler.is_using = False
if rx_length == 0:
return data_list, scs.COMM_RX_TIMEOUT
while True:
if rx_length < status_length:
return data_list, scs.COMM_RX_CORRUPT
# find packet header
for id_ in range(0, (rx_length - 1)):
if (rxpacket[id_] == 0xFF) and (rxpacket[id_ + 1] == 0xFF):
break
if id_ == 0: # found at the beginning of the packet
# calculate checksum
checksum = 0
for id_ in range(2, status_length - 1): # except header & checksum
checksum += rxpacket[id_]
checksum = scs.SCS_LOBYTE(~checksum)
if rxpacket[status_length - 1] == checksum:
result = scs.COMM_SUCCESS
data_list[rxpacket[scs.PKT_ID]] = rxpacket[scs.PKT_ERROR]
del rxpacket[0:status_length]
rx_length = rx_length - status_length
if rx_length == 0:
return data_list, result
else:
result = scs.COMM_RX_CORRUPT
# remove header (0xFF 0xFF)
del rxpacket[0:2]
rx_length = rx_length - 2
else:
# remove unnecessary packets
del rxpacket[0:id_]
rx_length = rx_length - id_
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
for n_try in range(1 + num_retry):
ids_status, comm = self._broadcast_ping()
if self._is_comm_success(comm):
break
logger.debug(f"Broadcast failed on port '{self.port}' ({n_try=})")
logger.debug(self.packet_handler.getRxPacketError(comm))
if not self._is_comm_success(comm):
if raise_on_error:
raise ConnectionError(self.packet_handler.getRxPacketError(comm))
return ids_status if ids_status else None
ids_errors = {id_: status for id_, status in ids_status.items() if self._is_error(status)}
if ids_errors:
display_dict = {id_: self.packet_handler.getRxPacketError(err) for id_, err in ids_errors.items()}
logger.error(f"Some motors found returned an error status:\n{pformat(display_dict, indent=4)}")
comm, model_numbers = self._sync_read(
"Model_Number", list(ids_status), model="scs_series", num_retry=num_retry
)
if not self._is_comm_success(comm):
if raise_on_error:
raise ConnectionError(self.packet_handler.getRxPacketError(comm))
return model_numbers if model_numbers else None
return model_numbers

View File

@ -0,0 +1,108 @@
# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
SCS_SERIES_CONTROL_TABLE = {
# EPROM
"Firmware_Version": (0, 2),
"Model_Number": (3, 2),
"ID": (5, 1),
"Baud_Rate": (6, 1),
"Return_Delay_Time": (7, 1),
"Response_Status_Level": (8, 1),
"Min_Position_Limit": (9, 2),
"Max_Position_Limit": (11, 2),
"Max_Temperature_Limit": (13, 1),
"Max_Voltage_Limit": (14, 1),
"Min_Voltage_Limit": (15, 1),
"Max_Torque_Limit": (16, 2),
"Phase": (18, 1),
"Unloading_Condition": (19, 1),
"LED_Alarm_Condition": (20, 1),
"P_Coefficient": (21, 1),
"D_Coefficient": (22, 1),
"I_Coefficient": (23, 1),
"Minimum_Startup_Force": (24, 2),
"CW_Dead_Zone": (26, 1),
"CCW_Dead_Zone": (27, 1),
"Protection_Current": (28, 2),
"Angular_Resolution": (30, 1),
"Homing_Offset": (31, 2),
"Operating_Mode": (33, 1),
"Protective_Torque": (34, 1),
"Protection_Time": (35, 1),
"Overload_Torque": (36, 1),
"Speed_closed_loop_P_proportional_coefficient": (37, 1),
"Over_Current_Protection_Time": (38, 1),
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
# SRAM
"Torque_Enable": (40, 1),
"Acceleration": (41, 1),
"Goal_Position": (42, 2),
"Goal_Time": (44, 2),
"Goal_Speed": (46, 2),
"Torque_Limit": (48, 2),
"Lock": (55, 1),
"Present_Position": (56, 2),
"Present_Speed": (58, 2),
"Present_Load": (60, 2),
"Present_Voltage": (62, 1),
"Present_Temperature": (63, 1),
"Status": (65, 1),
"Moving": (66, 1),
"Present_Current": (69, 2),
# Not in the Memory Table
"Maximum_Acceleration": (85, 2),
}
SCS_SERIES_BAUDRATE_TABLE = {
0: 1_000_000,
1: 500_000,
2: 250_000,
3: 128_000,
4: 115_200,
5: 57_600,
6: 38_400,
7: 19_200,
}
MODEL_CONTROL_TABLE = {
"scs_series": SCS_SERIES_CONTROL_TABLE,
"sts3215": SCS_SERIES_CONTROL_TABLE,
}
MODEL_RESOLUTION = {
"scs_series": 4096,
"sts3215": 4096,
}
# {model: model_number}
MODEL_NUMBER = {
"sts3215": 777,
}
MODEL_BAUDRATE_TABLE = {
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
"sts3215": SCS_SERIES_BAUDRATE_TABLE,
}
NORMALIZATION_REQUIRED = ["Goal_Position", "Present_Position"]
# Sign-Magnitude encoding bits
ENCODINGS = {
"Homing_Offset": 11,
"Goal_Speed": 15,
}
AVAILABLE_BAUDRATES = [
4_800,
9_600,
14_400,
19_200,
38_400,
57_600,
115_200,
128_000,
250_000,
500_000,
1_000_000,
]

View File

@ -0,0 +1,926 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ruff: noqa: N802
# This noqa is for the Protocols classes: PortHandler, PacketHandler GroupSyncRead/Write
# TODO(aliberts): Add block noqa when feature below is available
# https://github.com/astral-sh/ruff/issues/3711
import abc
import logging
from dataclasses import dataclass
from enum import Enum
from functools import cached_property
from pprint import pformat
from typing import Protocol, TypeAlias, overload
import serial
from deepdiff import DeepDiff
from tqdm import tqdm
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.utils import enter_pressed, move_cursor_up
NameOrID: TypeAlias = str | int
Value: TypeAlias = int | float
MAX_ID_RANGE = 252
logger = logging.getLogger(__name__)
def get_ctrl_table(model_ctrl_table: dict[str, dict], model: str) -> dict[str, tuple[int, int]]:
ctrl_table = model_ctrl_table.get(model)
if ctrl_table is None:
raise KeyError(f"Control table for {model=} not found.")
return ctrl_table
def get_address(model_ctrl_table: dict[str, dict], model: str, data_name: str) -> tuple[int, int]:
ctrl_table = get_ctrl_table(model_ctrl_table, model)
addr_bytes = ctrl_table.get(data_name)
if addr_bytes is None:
raise KeyError(f"Address for '{data_name}' not found in {model} control table.")
return addr_bytes
def assert_same_address(model_ctrl_table: dict[str, dict], motor_models: list[str], data_name: str) -> None:
all_addr = []
all_bytes = []
for model in motor_models:
addr, bytes = get_address(model_ctrl_table, model, data_name)
all_addr.append(addr)
all_bytes.append(bytes)
if len(set(all_addr)) != 1:
raise NotImplementedError(
f"At least two motor models use a different address for `data_name`='{data_name}'"
f"({list(zip(motor_models, all_addr, strict=False))})."
)
if len(set(all_bytes)) != 1:
raise NotImplementedError(
f"At least two motor models use a different bytes representation for `data_name`='{data_name}'"
f"({list(zip(motor_models, all_bytes, strict=False))})."
)
class MotorNormMode(Enum):
DEGREE = 0
RANGE_0_100 = 1
RANGE_M100_100 = 2
VELOCITY = 3
@dataclass
class MotorCalibration:
id: int
drive_mode: int
homing_offset: int
range_min: int
range_max: int
@dataclass
class Motor:
id: int
model: str
norm_mode: MotorNormMode
class JointOutOfRangeError(Exception):
def __init__(self, message="Joint is out of range"):
self.message = message
super().__init__(self.message)
class PortHandler(Protocol):
def __init__(self, port_name):
self.is_open: bool
self.baudrate: int
self.packet_start_time: float
self.packet_timeout: float
self.tx_time_per_byte: float
self.is_using: bool
self.port_name: str
self.ser: serial.Serial
def openPort(self): ...
def closePort(self): ...
def clearPort(self): ...
def setPortName(self, port_name): ...
def getPortName(self): ...
def setBaudRate(self, baudrate): ...
def getBaudRate(self): ...
def getBytesAvailable(self): ...
def readPort(self, length): ...
def writePort(self, packet): ...
def setPacketTimeout(self, packet_length): ...
def setPacketTimeoutMillis(self, msec): ...
def isPacketTimeout(self): ...
def getCurrentTime(self): ...
def getTimeSinceStart(self): ...
def setupPort(self, cflag_baud): ...
def getCFlagBaud(self, baudrate): ...
class PacketHandler(Protocol):
def getTxRxResult(self, result): ...
def getRxPacketError(self, error): ...
def txPacket(self, port, txpacket): ...
def rxPacket(self, port): ...
def txRxPacket(self, port, txpacket): ...
def ping(self, port, id): ...
def action(self, port, id): ...
def readTx(self, port, id, address, length): ...
def readRx(self, port, id, length): ...
def readTxRx(self, port, id, address, length): ...
def read1ByteTx(self, port, id, address): ...
def read1ByteRx(self, port, id): ...
def read1ByteTxRx(self, port, id, address): ...
def read2ByteTx(self, port, id, address): ...
def read2ByteRx(self, port, id): ...
def read2ByteTxRx(self, port, id, address): ...
def read4ByteTx(self, port, id, address): ...
def read4ByteRx(self, port, id): ...
def read4ByteTxRx(self, port, id, address): ...
def writeTxOnly(self, port, id, address, length, data): ...
def writeTxRx(self, port, id, address, length, data): ...
def write1ByteTxOnly(self, port, id, address, data): ...
def write1ByteTxRx(self, port, id, address, data): ...
def write2ByteTxOnly(self, port, id, address, data): ...
def write2ByteTxRx(self, port, id, address, data): ...
def write4ByteTxOnly(self, port, id, address, data): ...
def write4ByteTxRx(self, port, id, address, data): ...
def regWriteTxOnly(self, port, id, address, length, data): ...
def regWriteTxRx(self, port, id, address, length, data): ...
def syncReadTx(self, port, start_address, data_length, param, param_length): ...
def syncWriteTxOnly(self, port, start_address, data_length, param, param_length): ...
class GroupSyncRead(Protocol):
def __init__(self, port, ph, start_address, data_length):
self.port: str
self.ph: PortHandler
self.start_address: int
self.data_length: int
self.last_result: bool
self.is_param_changed: bool
self.param: list
self.data_dict: dict
def makeParam(self): ...
def addParam(self, id): ...
def removeParam(self, id): ...
def clearParam(self): ...
def txPacket(self): ...
def rxPacket(self): ...
def txRxPacket(self): ...
def isAvailable(self, id, address, data_length): ...
def getData(self, id, address, data_length): ...
class GroupSyncWrite(Protocol):
def __init__(self, port, ph, start_address, data_length):
self.port: str
self.ph: PortHandler
self.start_address: int
self.data_length: int
self.is_param_changed: bool
self.param: list
self.data_dict: dict
def makeParam(self): ...
def addParam(self, id, data): ...
def removeParam(self, id): ...
def changeParam(self, id, data): ...
def clearParam(self): ...
def txPacket(self): ...
class MotorsBus(abc.ABC):
"""The main LeRobot class for implementing motors buses.
There are currently two implementations of this abstract class:
- DynamixelMotorsBus
- FeetechMotorsBus
Note: This class may evolve in the future should we add support for other manufacturers SDKs.
A MotorsBus allows to efficiently read and write to the attached motors.
It represents several motors daisy-chained together and connected through a serial port.
A MotorsBus subclass instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
To find the port, you can run our utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
>>> Finding all available ports for the MotorsBus.
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
>>> Remove the usb cable from your MotorsBus and press Enter when done.
>>> The port of this MotorsBus is /dev/tty.usbmodem575E0031751.
>>> Reconnect the usb cable.
```
Example of usage for 1 Feetech sts3215 motor connected to the bus:
```python
motors_bus = FeetechMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={"gripper": (6, "sts3215")},
)
motors_bus.connect()
position = motors_bus.read("Present_Position")
# Move from a few motor steps as an example
few_steps = 30
motors_bus.write("Goal_Position", position + few_steps)
# When done, properly disconnect the port using
motors_bus.disconnect()
```
"""
available_baudrates: list[int]
default_timeout: int
model_baudrate_table: dict[str, dict]
model_ctrl_table: dict[str, dict]
model_number_table: dict[str, int]
model_resolution_table: dict[str, int]
normalization_required: list[str]
def __init__(
self,
port: str,
motors: dict[str, Motor],
calibration: dict[str, MotorCalibration] | None = None,
):
self.port = port
self.motors = motors
self.calibration = calibration if calibration else {}
self.port_handler: PortHandler
self.packet_handler: PacketHandler
self.sync_reader: GroupSyncRead
self.sync_writer: GroupSyncWrite
self._comm_success: int
self._no_error: int
self._id_to_model_dict = {m.id: m.model for m in self.motors.values()}
self._id_to_name_dict = {m.id: name for name, m in self.motors.items()}
self._model_nb_to_model_dict = {v: k for k, v in self.model_number_table.items()}
def __len__(self):
return len(self.motors)
def __repr__(self):
return (
f"{self.__class__.__name__}(\n"
f" Port: '{self.port}',\n"
f" Motors: \n{pformat(self.motors, indent=8, sort_dicts=False)},\n"
")',\n"
)
@cached_property
def _has_different_ctrl_tables(self) -> bool:
if len(self.models) < 2:
return False
first_table = self.model_ctrl_table[self.models[0]]
return any(
DeepDiff(first_table, get_ctrl_table(self.model_ctrl_table, model)) for model in self.models[1:]
)
@cached_property
def names(self) -> list[str]:
return list(self.motors)
@cached_property
def models(self) -> list[str]:
return [m.model for m in self.motors.values()]
@cached_property
def ids(self) -> list[int]:
return [m.id for m in self.motors.values()]
def _model_nb_to_model(self, motor_nb: int) -> str:
return self._model_nb_to_model_dict[motor_nb]
def _id_to_model(self, motor_id: int) -> str:
return self._id_to_model_dict[motor_id]
def _id_to_name(self, motor_id: int) -> str:
return self._id_to_name_dict[motor_id]
def _get_motor_id(self, motor: NameOrID) -> int:
if isinstance(motor, str):
return self.motors[motor].id
elif isinstance(motor, int):
return motor
else:
raise TypeError(f"'{motor}' should be int, str.")
def _get_motor_model(self, motor: NameOrID) -> int:
if isinstance(motor, str):
return self.motors[motor].model
elif isinstance(motor, int):
return self._id_to_model_dict[motor]
else:
raise TypeError(f"'{motor}' should be int, str.")
def _validate_motors(self) -> None:
if len(self.ids) != len(set(self.ids)):
raise ValueError(f"Some motors have the same id!\n{self}")
# Ensure ctrl table available for all models
for model in self.models:
get_ctrl_table(self.model_ctrl_table, model)
def _is_comm_success(self, comm: int) -> bool:
return comm == self._comm_success
def _is_error(self, error: int) -> bool:
return error != self._no_error
def _assert_motors_exist(self) -> None:
# TODO(aliberts): collect all wrong ids/models and display them at once
found_models = self.broadcast_ping()
expected_models = {m.id: self.model_number_table[m.model] for m in self.motors.values()}
if not found_models or set(found_models) != set(self.ids):
raise RuntimeError(
f"{self.__class__.__name__} is supposed to have these motors: ({{id: model_nb}})"
f"\n{pformat(expected_models, indent=4, sort_dicts=False)}\n"
f"But it found these motors on port '{self.port}':"
f"\n{pformat(found_models, indent=4, sort_dicts=False)}\n"
)
for id_, model in expected_models.items():
if found_models[id_] != model:
raise RuntimeError(
f"Motor '{self._id_to_name(id_)}' (id={id_}) is supposed to be of model_number={model} "
f"('{self._id_to_model(id_)}') but a model_number={found_models[id_]} "
"was found instead for that id."
)
@property
def is_connected(self) -> bool:
return self.port_handler.is_open
def connect(self, assert_motors_exist: bool = True) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
f"{self.__class__.__name__}('{self.port}') is already connected. Do not call `{self.__class__.__name__}.connect()` twice."
)
try:
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
elif assert_motors_exist:
self._assert_motors_exist()
except (FileNotFoundError, OSError, serial.SerialException) as e:
raise ConnectionError(
f"\nCould not connect on port '{self.port}'. Make sure you are using the correct port."
"\nTry running `python lerobot/scripts/find_motors_bus_port.py`\n"
) from e
self.set_timeout()
logger.debug(f"{self.__class__.__name__} connected.")
@classmethod
def scan_port(cls, port: str) -> dict[int, list[int]]:
bus = cls(port, {})
try:
bus.port_handler.openPort()
except (FileNotFoundError, OSError, serial.SerialException) as e:
raise ConnectionError(
f"Could not connect to port '{port}'. Make sure you are using the correct port."
"\nTry running `python lerobot/scripts/find_motors_bus_port.py`\n"
) from e
baudrate_ids = {}
for baudrate in tqdm(bus.available_baudrates, desc="Scanning port"):
bus.set_baudrate(baudrate)
ids_models = bus.broadcast_ping()
if ids_models:
tqdm.write(f"Motors found for {baudrate=}: {pformat(ids_models, indent=4)}")
baudrate_ids[baudrate] = list(ids_models)
return baudrate_ids
@abc.abstractmethod
def configure_motors(self) -> None:
pass
def disable_torque(self, motors: NameOrID | list[NameOrID] | None = None) -> None:
pass
if motors is None:
motors = self.names
elif isinstance(motors, (str, int)):
motors = [motors]
elif not isinstance(motors, list):
raise TypeError(motors)
self._disable_torque(motors)
def enable_torque(self, motors: NameOrID | list[NameOrID] | None = None) -> None:
pass
if motors is None:
motors = self.names
elif isinstance(motors, (str, int)):
motors = [motors]
elif not isinstance(motors, list):
raise TypeError(motors)
self._enable_torque(motors)
@abc.abstractmethod
def _enable_torque(self, motors: list[NameOrID]) -> None:
pass
@abc.abstractmethod
def _disable_torque(self, motors: list[NameOrID]) -> None:
pass
def set_timeout(self, timeout_ms: int | None = None):
timeout_ms = timeout_ms if timeout_ms is not None else self.default_timeout
self.port_handler.setPacketTimeoutMillis(timeout_ms)
def get_baudrate(self) -> int:
return self.port_handler.getBaudRate()
def set_baudrate(self, baudrate: int) -> None:
present_bus_baudrate = self.port_handler.getBaudRate()
if present_bus_baudrate != baudrate:
logger.info(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
self.port_handler.setBaudRate(baudrate)
if self.port_handler.getBaudRate() != baudrate:
raise OSError("Failed to write bus baud rate.")
@property
def is_calibrated(self) -> bool:
return self.calibration == self.read_calibration()
def read_calibration(self) -> dict[str, MotorCalibration]:
offsets = self.sync_read("Homing_Offset", normalize=False)
mins = self.sync_read("Min_Position_Limit", normalize=False)
maxes = self.sync_read("Max_Position_Limit", normalize=False)
try:
drive_modes = self.sync_read("Drive_Mode", normalize=False)
except KeyError:
drive_modes = {name: 0 for name in self.names}
calibration = {}
for name, motor in self.motors.items():
calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=drive_modes[name],
homing_offset=offsets[name],
range_min=mins[name],
range_max=maxes[name],
)
return calibration
def write_calibration(self, calibration_dict: dict[str, MotorCalibration]) -> None:
for motor, calibration in calibration_dict.items():
self.write("Homing_Offset", motor, calibration.homing_offset)
self.write("Min_Position_Limit", motor, calibration.range_min)
self.write("Max_Position_Limit", motor, calibration.range_max)
self.calibration = calibration_dict
def reset_calibration(self, motors: NameOrID | list[NameOrID] | None = None) -> None:
if motors is None:
motors = self.names
elif isinstance(motors, (str, int)):
motors = [motors]
elif not isinstance(motors, list):
raise TypeError(motors)
for motor in motors:
model = self._get_motor_model(motor)
max_res = self.model_resolution_table[model] - 1
self.write("Homing_Offset", motor, 0, normalize=False)
self.write("Min_Position_Limit", motor, 0, normalize=False)
self.write("Max_Position_Limit", motor, max_res, normalize=False)
self.calibration = {}
def set_half_turn_homings(self, motors: NameOrID | list[NameOrID] | None = None) -> dict[NameOrID, Value]:
"""
This assumes motors present positions are roughly in the middle of their desired range
Step 1: Set homing and min max to 0
Step 2: Read Present_Position which will be Actual_Position since
Present_Position = Actual_Position ± Homing_Offset (1)
and Homing_Offset = 0 from step 1
Step 3: We want to set the Homing_Offset such that the current Present_Position to be half range of 1
revolution. For instance, if 1 revolution corresponds to 4095 (4096 steps), this means we want the
current Present_Position to be 2047.
In that example:
Present_Position = 2047 (2)
Actual_Position = X (read in step 2)
from (1) and (2):
=> Homing_Offset = ±(X - 2048)
"""
if motors is None:
motors = self.names
elif isinstance(motors, (str, int)):
motors = [motors]
else:
raise TypeError(motors)
self.reset_calibration(motors)
actual_positions = self.sync_read("Present_Position", motors, normalize=False)
homing_offsets = self._get_half_turn_homings(actual_positions)
for motor, offset in homing_offsets.items():
self.write("Homing_Offset", motor, offset)
return homing_offsets
@abc.abstractmethod
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
pass
def record_ranges_of_motion(
self, motors: NameOrID | list[NameOrID] | None = None, display_values: bool = True
) -> tuple[dict[NameOrID, Value], dict[NameOrID, Value]]:
"""
This assumes that the homing offsets have been set such that all possible values in the range of
motion are positive and that the zero is not crossed. To that end, `set_half_turn_homings` should
typically be called prior to this.
"""
if motors is None:
motors = self.names
elif isinstance(motors, (str, int)):
motors = [motors]
elif not isinstance(motors, list):
raise TypeError(motors)
start_positions = self.sync_read("Present_Position", motors, normalize=False)
mins = start_positions.copy()
maxes = start_positions.copy()
while True:
positions = self.sync_read("Present_Position", motors, normalize=False)
mins = {motor: min(positions[motor], min_) for motor, min_ in mins.items()}
maxes = {motor: max(positions[motor], max_) for motor, max_ in maxes.items()}
if display_values:
print("\n-------------------------------------------")
print(f"{'NAME':<15} | {'MIN':>6} | {'POS':>6} | {'MAX':>6}")
for name in motors:
print(f"{name:<15} | {mins[name]:>6} | {positions[name]:>6} | {maxes[name]:>6}")
if enter_pressed():
break
if display_values:
# Move cursor up to overwrite the previous output
move_cursor_up(len(motors) + 3)
return mins, maxes
def _normalize(self, data_name: str, ids_values: dict[int, int]) -> dict[int, float]:
normalized_values = {}
for id_, val in ids_values.items():
name = self._id_to_name(id_)
min_ = self.calibration[name].range_min
max_ = self.calibration[name].range_max
bounded_val = min(max_, max(min_, val))
if self.motors[name].norm_mode is MotorNormMode.RANGE_M100_100:
normalized_values[id_] = (((bounded_val - min_) / (max_ - min_)) * 200) - 100
elif self.motors[name].norm_mode is MotorNormMode.RANGE_0_100:
normalized_values[id_] = ((bounded_val - min_) / (max_ - min_)) * 100
else:
# TODO(alibers): velocity and degree modes
raise NotImplementedError
return normalized_values
def _unnormalize(self, data_name: str, ids_values: dict[int, float]) -> dict[int, int]:
unnormalized_values = {}
for id_, val in ids_values.items():
name = self._id_to_name(id_)
min_ = self.calibration[name].range_min
max_ = self.calibration[name].range_max
if self.motors[name].norm_mode is MotorNormMode.RANGE_M100_100:
bounded_val = min(100.0, max(-100.0, val))
unnormalized_values[id_] = int(((bounded_val + 100) / 200) * (max_ - min_) + min_)
elif self.motors[name].norm_mode is MotorNormMode.RANGE_0_100:
bounded_val = min(100.0, max(0.0, val))
unnormalized_values[id_] = int((bounded_val / 100) * (max_ - min_) + min_)
else:
# TODO(alibers): velocity and degree modes
raise NotImplementedError
return unnormalized_values
@abc.abstractmethod
def _encode_value(
self, value: int, data_name: str | None = None, n_bytes: int | None = None
) -> dict[int, int]:
pass
@abc.abstractmethod
def _decode_value(
self, value: int, data_name: str | None = None, n_bytes: int | None = None
) -> dict[int, int]:
pass
@staticmethod
@abc.abstractmethod
def _split_int_to_bytes(value: int, n_bytes: int) -> list[int]:
"""
Splits an unsigned integer into a list of bytes in little-endian order.
This function extracts the individual bytes of an integer based on the
specified number of bytes (`n_bytes`). The output is a list of integers,
each representing a byte (0-255).
**Byte order:** The function returns bytes in **little-endian format**,
meaning the least significant byte (LSB) comes first.
Args:
value (int): The unsigned integer to be converted into a byte list. Must be within
the valid range for the specified `n_bytes`.
n_bytes (int): The number of bytes to use for conversion. Supported values:
- 1 (for values 0 to 255)
- 2 (for values 0 to 65,535)
- 4 (for values 0 to 4,294,967,295)
Raises:
ValueError: If `value` is negative or exceeds the maximum allowed for `n_bytes`.
NotImplementedError: If `n_bytes` is not 1, 2, or 4.
Returns:
list[int]: A list of integers, each representing a byte in **little-endian order**.
Examples:
>>> split_int_bytes(0x12, 1)
[18]
>>> split_int_bytes(0x1234, 2)
[52, 18] # 0x1234 → 0x34 0x12 (little-endian)
>>> split_int_bytes(0x12345678, 4)
[120, 86, 52, 18] # 0x12345678 → 0x78 0x56 0x34 0x12
"""
pass
def ping(self, motor: NameOrID, num_retry: int = 0, raise_on_error: bool = False) -> int | None:
id_ = self._get_motor_id(motor)
for n_try in range(1 + num_retry):
model_number, comm, error = self.packet_handler.ping(self.port_handler, id_)
if self._is_comm_success(comm):
break
logger.debug(f"ping failed for {id_=}: {n_try=} got {comm=} {error=}")
if not self._is_comm_success(comm):
if raise_on_error:
raise ConnectionError(self.packet_handler.getRxPacketError(comm))
else:
return
if self._is_error(error):
if raise_on_error:
raise RuntimeError(self.packet_handler.getTxRxResult(comm))
else:
return
return model_number
@abc.abstractmethod
def broadcast_ping(
self, num_retry: int = 0, raise_on_error: bool = False
) -> dict[int, list[int, str]] | None:
pass
@overload
def sync_read(
self, data_name: str, motors: None = ..., *, normalize: bool = ..., num_retry: int = ...
) -> dict[str, Value]: ...
@overload
def sync_read(
self,
data_name: str,
motors: NameOrID | list[NameOrID],
*,
normalize: bool = ...,
num_retry: int = ...,
) -> dict[NameOrID, Value]: ...
def sync_read(
self,
data_name: str,
motors: NameOrID | list[NameOrID] | None = None,
*,
normalize: bool = True,
num_retry: int = 0,
) -> dict[NameOrID, Value]:
if not self.is_connected:
raise DeviceNotConnectedError(
f"{self.__class__.__name__}('{self.port}') is not connected. You need to run `{self.__class__.__name__}.connect()`."
)
id_key_map: dict[int, NameOrID] = {}
if motors is None:
id_key_map = {m.id: name for name, m in self.motors.items()}
elif isinstance(motors, (str, int)):
id_key_map = {self._get_motor_id(motors): motors}
elif isinstance(motors, list):
id_key_map = {self._get_motor_id(m): m for m in motors}
else:
raise TypeError(motors)
motor_ids = list(id_key_map)
comm, ids_values = self._sync_read(data_name, motor_ids, num_retry=num_retry)
if not self._is_comm_success(comm):
raise ConnectionError(
f"Failed to sync read '{data_name}' on {motor_ids=} after {num_retry + 1} tries."
f"{self.packet_handler.getTxRxResult(comm)}"
)
if normalize and data_name in self.normalization_required:
ids_values = self._normalize(data_name, ids_values)
return {id_key_map[id_]: val for id_, val in ids_values.items()}
def _sync_read(
self, data_name: str, motor_ids: list[str], model: str | None = None, num_retry: int = 0
) -> tuple[int, dict[int, int]]:
if self._has_different_ctrl_tables:
models = [self._id_to_model(id_) for id_ in motor_ids]
assert_same_address(self.model_ctrl_table, models, data_name)
model = self._id_to_model(next(iter(motor_ids))) if model is None else model
addr, n_bytes = get_address(self.model_ctrl_table, model, data_name)
self._setup_sync_reader(motor_ids, addr, n_bytes)
# FIXME(aliberts, pkooij): We should probably not have to do this.
# Let's try to see if we can do with better comm status handling instead.
# self.port_handler.ser.reset_output_buffer()
# self.port_handler.ser.reset_input_buffer()
for n_try in range(1 + num_retry):
comm = self.sync_reader.txRxPacket()
if self._is_comm_success(comm):
break
logger.debug(f"Failed to sync read '{data_name}' ({addr=} {n_bytes=}) on {motor_ids=} ({n_try=})")
logger.debug(self.packet_handler.getRxPacketError(comm))
values = {}
for id_ in motor_ids:
val = self.sync_reader.getData(id_, addr, n_bytes)
values[id_] = self._decode_value(val, data_name, n_bytes)
return comm, values
def _setup_sync_reader(self, motor_ids: list[str], addr: int, n_bytes: int) -> None:
self.sync_reader.clearParam()
self.sync_reader.start_address = addr
self.sync_reader.data_length = n_bytes
for id_ in motor_ids:
self.sync_reader.addParam(id_)
# TODO(aliberts, pkooij): Implementing something like this could get even much faster read times if need be.
# Would have to handle the logic of checking if a packet has been sent previously though but doable.
# This could be at the cost of increase latency between the moment the data is produced by the motors and
# the moment it is used by a policy.
# def _async_read(self, motor_ids: list[str], address: int, n_bytes: int):
# if self.sync_reader.start_address != address or self.sync_reader.data_length != n_bytes or ...:
# self._setup_sync_reader(motor_ids, address, n_bytes)
# else:
# self.sync_reader.rxPacket()
# self.sync_reader.txPacket()
# for id_ in motor_ids:
# value = self.sync_reader.getData(id_, address, n_bytes)
def sync_write(
self,
data_name: str,
values: Value | dict[NameOrID, Value],
*,
normalize: bool = True,
num_retry: int = 0,
) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(
f"{self.__class__.__name__}('{self.port}') is not connected. You need to run `{self.__class__.__name__}.connect()`."
)
if isinstance(values, int):
ids_values = {id_: values for id_ in self.ids}
elif isinstance(values, dict):
ids_values = {self._get_motor_id(motor): val for motor, val in values.items()}
else:
raise TypeError(f"'values' is expected to be a single value or a dict. Got {values}")
if normalize and data_name in self.normalization_required and self.calibration is not None:
ids_values = self._unnormalize(data_name, ids_values)
comm = self._sync_write(data_name, ids_values, num_retry=num_retry)
if not self._is_comm_success(comm):
raise ConnectionError(
f"Failed to sync write '{data_name}' with {ids_values=} after {num_retry + 1} tries."
f"\n{self.packet_handler.getTxRxResult(comm)}"
)
def _sync_write(self, data_name: str, ids_values: dict[int, int], num_retry: int = 0) -> int:
if self._has_different_ctrl_tables:
models = [self._id_to_model(id_) for id_ in ids_values]
assert_same_address(self.model_ctrl_table, models, data_name)
model = self._id_to_model(next(iter(ids_values)))
addr, n_bytes = get_address(self.model_ctrl_table, model, data_name)
ids_values = {id_: self._encode_value(value, data_name, n_bytes) for id_, value in ids_values.items()}
self._setup_sync_writer(ids_values, addr, n_bytes)
for n_try in range(1 + num_retry):
comm = self.sync_writer.txPacket()
if self._is_comm_success(comm):
break
logger.debug(
f"Failed to sync write '{data_name}' ({addr=} {n_bytes=}) with {ids_values=} ({n_try=})"
)
logger.debug(self.packet_handler.getRxPacketError(comm))
return comm
def _setup_sync_writer(self, ids_values: dict[int, int], addr: int, n_bytes: int) -> None:
self.sync_writer.clearParam()
self.sync_writer.start_address = addr
self.sync_writer.data_length = n_bytes
for id_, value in ids_values.items():
data = self._split_int_to_bytes(value, n_bytes)
self.sync_writer.addParam(id_, data)
def write(
self, data_name: str, motor: NameOrID, value: Value, *, normalize: bool = True, num_retry: int = 0
) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(
f"{self.__class__.__name__}('{self.port}') is not connected. You need to run `{self.__class__.__name__}.connect()`."
)
id_ = self._get_motor_id(motor)
if normalize and data_name in self.normalization_required and self.calibration is not None:
id_value = self._unnormalize(data_name, {id_: value})
value = id_value[id_]
comm, error = self._write(data_name, id_, value, num_retry=num_retry)
if not self._is_comm_success(comm):
raise ConnectionError(
f"Failed to write '{data_name}' on {id_=} with '{value}' after {num_retry + 1} tries."
f"\n{self.packet_handler.getTxRxResult(comm)}"
)
elif self._is_error(error):
raise RuntimeError(
f"Failed to write '{data_name}' on {id_=} with '{value}' after {num_retry + 1} tries."
f"\n{self.packet_handler.getRxPacketError(error)}"
)
def _write(self, data_name: str, motor_id: int, value: int, num_retry: int = 0) -> tuple[int, int]:
model = self._id_to_model(motor_id)
addr, n_bytes = get_address(self.model_ctrl_table, model, data_name)
value = self._encode_value(value, data_name, n_bytes)
data = self._split_int_to_bytes(value, n_bytes)
for n_try in range(1 + num_retry):
comm, error = self.packet_handler.writeTxRx(self.port_handler, motor_id, addr, n_bytes, data)
if self._is_comm_success(comm):
break
logger.debug(
f"Failed to write '{data_name}' ({addr=} {n_bytes=}) on {motor_id=} with '{value}' ({n_try=})"
)
logger.debug(self.packet_handler.getRxPacketError(comm))
return comm, error
def disconnect(self, disable_torque: bool = True) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(
f"{self.__class__.__name__}('{self.port}') is not connected. Try running `{self.__class__.__name__}.connect()` first."
)
if disable_torque:
self.port_handler.clearPort()
self.port_handler.is_using = False
self.disable_torque()
self.port_handler.closePort()
logger.debug(f"{self.__class__.__name__} disconnected.")

View File

@ -12,22 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Protocol
from lerobot.common.robot_devices.motors.configs import (
DynamixelMotorsBusConfig,
FeetechMotorsBusConfig,
MotorsBusConfig,
)
class MotorsBus(Protocol):
def motor_names(self): ...
def set_calibration(self): ...
def apply_calibration(self): ...
def revert_calibration(self): ...
def read(self): ...
def write(self): ...
from .configs import MotorsBusConfig
from .motors_bus import MotorsBus
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
@ -35,12 +21,12 @@ def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig
for key, cfg in motors_bus_configs.items():
if cfg.type == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
from .dynamixel import DynamixelMotorsBus
motors_buses[key] = DynamixelMotorsBus(cfg)
elif cfg.type == "feetech":
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus
motors_buses[key] = FeetechMotorsBus(cfg)
@ -52,13 +38,16 @@ def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig
def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
if motor_type == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
from .configs import DynamixelMotorsBusConfig
from .dynamixel import DynamixelMotorsBus
config = DynamixelMotorsBusConfig(**kwargs)
return DynamixelMotorsBus(config)
elif motor_type == "feetech":
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
from feetech import FeetechMotorsBus
from .configs import FeetechMotorsBusConfig
config = FeetechMotorsBusConfig(**kwargs)
return FeetechMotorsBus(config)

View File

@ -33,7 +33,7 @@ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from torch import Tensor, nn
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
@ -238,8 +238,8 @@ class DiffusionModel(nn.Module):
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
"""Encode image features and concatenate them all together along with the state vector."""
batch_size, n_obs_steps = batch[OBS_ROBOT].shape[:2]
global_cond_feats = [batch[OBS_ROBOT]]
batch_size, n_obs_steps = batch[OBS_STATE].shape[:2]
global_cond_feats = [batch[OBS_STATE]]
# Extract image features.
if self.config.image_features:
if self.config.use_separate_rgb_encoder_per_camera:
@ -269,7 +269,7 @@ class DiffusionModel(nn.Module):
global_cond_feats.append(img_features)
if self.config.env_state_feature:
global_cond_feats.append(batch[OBS_ENV])
global_cond_feats.append(batch[OBS_ENV_STATE])
# Concatenate features then flatten to (B, global_cond_dim).
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)

View File

@ -57,7 +57,7 @@ import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
from transformers import AutoTokenizer
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.constants import ACTION, OBS_STATE
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
from lerobot.common.policies.pi0.paligemma_with_expert import (
@ -271,7 +271,7 @@ class PI0Policy(PreTrainedPolicy):
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch = self.normalize_inputs(batch)
@ -303,7 +303,7 @@ class PI0Policy(PreTrainedPolicy):
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> tuple[Tensor, dict[str, Tensor]]:
"""Do a full training forward pass to compute the loss"""
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
@ -380,7 +380,7 @@ class PI0Policy(PreTrainedPolicy):
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
"""Tokenize the text input"""
device = batch[OBS_ROBOT].device
device = batch[OBS_STATE].device
tasks = batch["task"]
# PaliGemma prompt has to end with a new line
@ -427,7 +427,7 @@ class PI0Policy(PreTrainedPolicy):
def prepare_state(self, batch):
"""Pad state"""
state = pad_vector(batch[OBS_ROBOT], self.config.max_state_dim)
state = pad_vector(batch[OBS_STATE], self.config.max_state_dim)
return state
def prepare_action(self, batch):

View File

@ -35,7 +35,7 @@ import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from torch import Tensor
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
@ -753,9 +753,9 @@ class TDMPCObservationEncoder(nn.Module):
)
)
if self.config.env_state_feature:
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV]))
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV_STATE]))
if self.config.robot_state_feature:
feat.append(self.state_enc_layers(obs_dict[OBS_ROBOT]))
feat.append(self.state_enc_layers(obs_dict[OBS_STATE]))
return torch.stack(feat, dim=0).mean(0)

View File

@ -1,67 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Protocol
import numpy as np
from lerobot.common.robot_devices.cameras.configs import (
CameraConfig,
IntelRealSenseCameraConfig,
OpenCVCameraConfig,
)
# Defines a camera type
class Camera(Protocol):
def connect(self): ...
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
def async_read(self) -> np.ndarray: ...
def disconnect(self): ...
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> list[Camera]:
cameras = {}
for key, cfg in camera_configs.items():
if cfg.type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
cameras[key] = IntelRealSenseCamera(cfg)
else:
raise ValueError(f"The camera type '{cfg.type}' is not valid.")
return cameras
def make_camera(camera_type, **kwargs) -> Camera:
if camera_type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
config = OpenCVCameraConfig(**kwargs)
return OpenCVCamera(config)
elif camera_type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
config = IntelRealSenseCameraConfig(**kwargs)
return IntelRealSenseCamera(config)
else:
raise ValueError(f"The camera type '{camera_type}' is not valid.")

View File

@ -1,873 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 2.0
BAUDRATE = 1_000_000
TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
# [-10, 110] until an error is raised.
LOWER_BOUND_LINEAR = -10
UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m077
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m288
# https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
# https://emanual.robotis.com/docs/en/dxl/x/xm430-w350
# https://emanual.robotis.com/docs/en/dxl/x/xm540-w270
# https://emanual.robotis.com/docs/en/dxl/x/xc430-w150
# data_name: (address, size_byte)
X_SERIES_CONTROL_TABLE = {
"Model_Number": (0, 2),
"Model_Information": (2, 4),
"Firmware_Version": (6, 1),
"ID": (7, 1),
"Baud_Rate": (8, 1),
"Return_Delay_Time": (9, 1),
"Drive_Mode": (10, 1),
"Operating_Mode": (11, 1),
"Secondary_ID": (12, 1),
"Protocol_Type": (13, 1),
"Homing_Offset": (20, 4),
"Moving_Threshold": (24, 4),
"Temperature_Limit": (31, 1),
"Max_Voltage_Limit": (32, 2),
"Min_Voltage_Limit": (34, 2),
"PWM_Limit": (36, 2),
"Current_Limit": (38, 2),
"Acceleration_Limit": (40, 4),
"Velocity_Limit": (44, 4),
"Max_Position_Limit": (48, 4),
"Min_Position_Limit": (52, 4),
"Shutdown": (63, 1),
"Torque_Enable": (64, 1),
"LED": (65, 1),
"Status_Return_Level": (68, 1),
"Registered_Instruction": (69, 1),
"Hardware_Error_Status": (70, 1),
"Velocity_I_Gain": (76, 2),
"Velocity_P_Gain": (78, 2),
"Position_D_Gain": (80, 2),
"Position_I_Gain": (82, 2),
"Position_P_Gain": (84, 2),
"Feedforward_2nd_Gain": (88, 2),
"Feedforward_1st_Gain": (90, 2),
"Bus_Watchdog": (98, 1),
"Goal_PWM": (100, 2),
"Goal_Current": (102, 2),
"Goal_Velocity": (104, 4),
"Profile_Acceleration": (108, 4),
"Profile_Velocity": (112, 4),
"Goal_Position": (116, 4),
"Realtime_Tick": (120, 2),
"Moving": (122, 1),
"Moving_Status": (123, 1),
"Present_PWM": (124, 2),
"Present_Current": (126, 2),
"Present_Velocity": (128, 4),
"Present_Position": (132, 4),
"Velocity_Trajectory": (136, 4),
"Position_Trajectory": (140, 4),
"Present_Input_Voltage": (144, 2),
"Present_Temperature": (146, 1),
}
X_SERIES_BAUDRATE_TABLE = {
0: 9_600,
1: 57_600,
2: 115_200,
3: 1_000_000,
4: 2_000_000,
5: 3_000_000,
6: 4_000_000,
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"x_series": X_SERIES_CONTROL_TABLE,
"xl330-m077": X_SERIES_CONTROL_TABLE,
"xl330-m288": X_SERIES_CONTROL_TABLE,
"xl430-w250": X_SERIES_CONTROL_TABLE,
"xm430-w350": X_SERIES_CONTROL_TABLE,
"xm540-w270": X_SERIES_CONTROL_TABLE,
"xc430-w150": X_SERIES_CONTROL_TABLE,
}
MODEL_RESOLUTION = {
"x_series": 4096,
"xl330-m077": 4096,
"xl330-m288": 4096,
"xl430-w250": 4096,
"xm430-w350": 4096,
"xm540-w270": 4096,
"xc430-w150": 4096,
}
MODEL_BAUDRATE_TABLE = {
"x_series": X_SERIES_BAUDRATE_TABLE,
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
}
NUM_READ_RETRY = 10
NUM_WRITE_RETRY = 10
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
"""
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
def convert_to_bytes(value, bytes, mock=False):
if mock:
return value
import dynamixel_sdk as dxl
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if bytes == 1:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
]
elif bytes == 2:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
]
elif bytes == 4:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
]
else:
raise NotImplementedError(
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
f"{bytes} is provided instead."
)
return data
def get_group_sync_key(data_name, motor_names):
group_key = f"{data_name}_" + "_".join(motor_names)
return group_key
def get_result_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
rslt_name = f"{fn_name}_{group_key}"
return rslt_name
def get_queue_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
queue_name = f"{fn_name}_{group_key}"
return queue_name
def get_log_name(var_name, fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
log_name = f"{var_name}_{fn_name}_{group_key}"
return log_name
def assert_same_address(model_ctrl_table, motor_models, data_name):
all_addr = []
all_bytes = []
for model in motor_models:
addr, bytes = model_ctrl_table[model][data_name]
all_addr.append(addr)
all_bytes.append(bytes)
if len(set(all_addr)) != 1:
raise NotImplementedError(
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
)
if len(set(all_bytes)) != 1:
raise NotImplementedError(
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
)
class TorqueMode(enum.Enum):
ENABLED = 1
DISABLED = 0
class DriveMode(enum.Enum):
NON_INVERTED = 0
INVERTED = 1
class CalibrationMode(enum.Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
LINEAR = 1
class JointOutOfRangeError(Exception):
def __init__(self, message="Joint is out of range"):
self.message = message
super().__init__(self.message)
class DynamixelMotorsBus:
"""
The DynamixelMotorsBus class allows to efficiently read and write to the attached motors. It relies on
the python dynamixel sdk to communicate with the motors. For more info, see the [Dynamixel SDK Documentation](https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
A DynamixelMotorsBus instance requires a port (e.g. `DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
To find the port, you can run our utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
>>> Finding all available ports for the MotorBus.
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
>>> Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
>>> The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751.
>>> Reconnect the usb cable.
```
Example of usage for 1 motor connected to the bus:
```python
motor_name = "gripper"
motor_index = 6
motor_model = "xl330-m288"
config = DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus = DynamixelMotorsBus(config)
motors_bus.connect()
position = motors_bus.read("Present_Position")
# move from a few motor steps as an example
few_steps = 30
motors_bus.write("Goal_Position", position + few_steps)
# when done, consider disconnecting
motors_bus.disconnect()
```
"""
def __init__(
self,
config: DynamixelMotorsBusConfig,
):
self.port = config.port
self.motors = config.motors
self.mock = config.mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
self.port_handler = None
self.packet_handler = None
self.calibration = None
self.is_connected = False
self.group_readers = {}
self.group_writers = {}
self.logs = {}
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"DynamixelMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
self.port_handler = dxl.PortHandler(self.port)
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
try:
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
except Exception:
traceback.print_exc()
print(
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
)
raise
# Allow to read and write
self.is_connected = True
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
def reconnect(self):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
self.port_handler = dxl.PortHandler(self.port)
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
self.is_connected = True
def are_motors_configured(self):
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
# a ConnectionError will be raised anyway.
try:
return (self.motor_indices == self.read("ID")).all()
except ConnectionError as e:
print(e)
return False
def find_motor_indices(self, possible_ids=None, num_retry=2):
if possible_ids is None:
possible_ids = range(MAX_ID_RANGE)
indices = []
for idx in tqdm.tqdm(possible_ids):
try:
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
except ConnectionError:
continue
if idx != present_idx:
# sanity check
raise OSError(
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
)
indices.append(idx)
return indices
def set_bus_baudrate(self, baudrate):
present_bus_baudrate = self.port_handler.getBaudRate()
if present_bus_baudrate != baudrate:
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
self.port_handler.setBaudRate(baudrate)
if self.port_handler.getBaudRate() != baudrate:
raise OSError("Failed to write bus baud rate.")
@property
def motor_names(self) -> list[str]:
return list(self.motors.keys())
@property
def motor_models(self) -> list[str]:
return [model for _, model in self.motors.values()]
@property
def motor_indices(self) -> list[int]:
return [idx for idx, _ in self.motors.values()]
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function applies the calibration, automatically detects out of range errors for motors values and attempts to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, dynamixel xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31] to
# nominal range [-resolution//2, resolution//2] (e.g. [-2048, 2048])
values[i] += homing_offset
# Convert from range [-resolution//2, resolution//2] to
# universal float32 centered degree range [-180, 180]
# (e.g. 2048 / (4096 // 2) * 180 = 180)
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Rescale the present position to a nominal range [0, 100] %,
# useful for joints with linear motions like Aloha gripper
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
f"but present value is {values[i]} %. "
"This might be due to a cable connection issue creating an artificial jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted by a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted by less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= ((resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (-(resolution // 2) - values[i] - homing_offset) / resolution
upp_factor = ((resolution // 2) - values[i] - homing_offset) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Subtract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from nominal lnear range of [0, 100] % to
# actual motor range of values which can be arbitrary.
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
values = np.round(values).astype(np.int32)
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
return_list = True
if not isinstance(motor_ids, list):
return_list = False
motor_ids = [motor_ids]
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = dxl.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
for idx in motor_ids:
group.addParam(idx)
for _ in range(num_retry):
comm = group.txRxPacket()
if comm == dxl.COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = group.getData(idx, addr, bytes)
values.append(value)
if return_list:
return values
else:
return values[0]
def read(self, data_name, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
if data_name not in self.group_readers:
# create new group reader
self.group_readers[group_key] = dxl.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
for idx in motor_ids:
self.group_readers[group_key].addParam(idx)
for _ in range(NUM_READ_RETRY):
comm = self.group_readers[group_key].txRxPacket()
if comm == dxl.COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = self.group_readers[group_key].getData(idx, addr, bytes)
values.append(value)
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration_autocorrect(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# log the utc time at which the data was received
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
return values
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
if not isinstance(motor_ids, list):
motor_ids = [motor_ids]
if not isinstance(values, list):
values = [values]
assert_same_address(self.model_ctrl_table, motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
group.addParam(idx, data)
for _ in range(num_retry):
comm = group.txPacket()
if comm == dxl.COMM_SUCCESS:
break
if comm != dxl.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
if isinstance(values, (int, float, np.integer)):
values = [int(values)] * len(motor_names)
values = np.array(values)
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.revert_calibration(values, motor_names)
values = values.tolist()
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
init_group = data_name not in self.group_readers
if init_group:
self.group_writers[group_key] = dxl.GroupSyncWrite(
self.port_handler, self.packet_handler, addr, bytes
)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
if init_group:
self.group_writers[group_key].addParam(idx, data)
else:
self.group_writers[group_key].changeParam(idx, data)
comm = self.group_writers[group_key].txPacket()
if comm != dxl.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
# log the number of seconds it took to write the data to the motors
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# TODO(rcadene): should we log the time before sending the write command?
# log the utc time when the write has been completed
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)
if self.port_handler is not None:
self.port_handler.closePort()
self.port_handler = None
self.packet_handler = None
self.group_readers = {}
self.group_writers = {}
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@ -1,898 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 0
BAUDRATE = 1_000_000
TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
# [-10, 110] until an error is raised.
LOWER_BOUND_LINEAR = -10
UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
SCS_SERIES_CONTROL_TABLE = {
"Model": (3, 2),
"ID": (5, 1),
"Baud_Rate": (6, 1),
"Return_Delay": (7, 1),
"Response_Status_Level": (8, 1),
"Min_Angle_Limit": (9, 2),
"Max_Angle_Limit": (11, 2),
"Max_Temperature_Limit": (13, 1),
"Max_Voltage_Limit": (14, 1),
"Min_Voltage_Limit": (15, 1),
"Max_Torque_Limit": (16, 2),
"Phase": (18, 1),
"Unloading_Condition": (19, 1),
"LED_Alarm_Condition": (20, 1),
"P_Coefficient": (21, 1),
"D_Coefficient": (22, 1),
"I_Coefficient": (23, 1),
"Minimum_Startup_Force": (24, 2),
"CW_Dead_Zone": (26, 1),
"CCW_Dead_Zone": (27, 1),
"Protection_Current": (28, 2),
"Angular_Resolution": (30, 1),
"Offset": (31, 2),
"Mode": (33, 1),
"Protective_Torque": (34, 1),
"Protection_Time": (35, 1),
"Overload_Torque": (36, 1),
"Speed_closed_loop_P_proportional_coefficient": (37, 1),
"Over_Current_Protection_Time": (38, 1),
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
"Torque_Enable": (40, 1),
"Acceleration": (41, 1),
"Goal_Position": (42, 2),
"Goal_Time": (44, 2),
"Goal_Speed": (46, 2),
"Torque_Limit": (48, 2),
"Lock": (55, 1),
"Present_Position": (56, 2),
"Present_Speed": (58, 2),
"Present_Load": (60, 2),
"Present_Voltage": (62, 1),
"Present_Temperature": (63, 1),
"Status": (65, 1),
"Moving": (66, 1),
"Present_Current": (69, 2),
# Not in the Memory Table
"Maximum_Acceleration": (85, 2),
}
SCS_SERIES_BAUDRATE_TABLE = {
0: 1_000_000,
1: 500_000,
2: 250_000,
3: 128_000,
4: 115_200,
5: 57_600,
6: 38_400,
7: 19_200,
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"scs_series": SCS_SERIES_CONTROL_TABLE,
"sts3215": SCS_SERIES_CONTROL_TABLE,
}
MODEL_RESOLUTION = {
"scs_series": 4096,
"sts3215": 4096,
}
MODEL_BAUDRATE_TABLE = {
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
"sts3215": SCS_SERIES_BAUDRATE_TABLE,
}
# High number of retries is needed for feetech compared to dynamixel motors.
NUM_READ_RETRY = 20
NUM_WRITE_RETRY = 20
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
"""
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
def convert_to_bytes(value, bytes, mock=False):
if mock:
return value
import scservo_sdk as scs
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if bytes == 1:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
]
elif bytes == 2:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
]
elif bytes == 4:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
]
else:
raise NotImplementedError(
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
f"{bytes} is provided instead."
)
return data
def get_group_sync_key(data_name, motor_names):
group_key = f"{data_name}_" + "_".join(motor_names)
return group_key
def get_result_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
rslt_name = f"{fn_name}_{group_key}"
return rslt_name
def get_queue_name(fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
queue_name = f"{fn_name}_{group_key}"
return queue_name
def get_log_name(var_name, fn_name, data_name, motor_names):
group_key = get_group_sync_key(data_name, motor_names)
log_name = f"{var_name}_{fn_name}_{group_key}"
return log_name
def assert_same_address(model_ctrl_table, motor_models, data_name):
all_addr = []
all_bytes = []
for model in motor_models:
addr, bytes = model_ctrl_table[model][data_name]
all_addr.append(addr)
all_bytes.append(bytes)
if len(set(all_addr)) != 1:
raise NotImplementedError(
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
)
if len(set(all_bytes)) != 1:
raise NotImplementedError(
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
)
class TorqueMode(enum.Enum):
ENABLED = 1
DISABLED = 0
class DriveMode(enum.Enum):
NON_INVERTED = 0
INVERTED = 1
class CalibrationMode(enum.Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
LINEAR = 1
class JointOutOfRangeError(Exception):
def __init__(self, message="Joint is out of range"):
self.message = message
super().__init__(self.message)
class FeetechMotorsBus:
"""
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on
the python feetech sdk to communicate with the motors. For more info, see the [feetech SDK Documentation](https://emanual.robotis.com/docs/en/software/feetech/feetech_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
A FeetechMotorsBus instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
To find the port, you can run our utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
>>> Finding all available ports for the MotorsBus.
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
>>> Remove the usb cable from your FeetechMotorsBus and press Enter when done.
>>> The port of this FeetechMotorsBus is /dev/tty.usbmodem575E0031751.
>>> Reconnect the usb cable.
```
Example of usage for 1 motor connected to the bus:
```python
motor_name = "gripper"
motor_index = 6
motor_model = "sts3215"
config = FeetechMotorsBusConfig(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus = FeetechMotorsBus(config)
motors_bus.connect()
position = motors_bus.read("Present_Position")
# move from a few motor steps as an example
few_steps = 30
motors_bus.write("Goal_Position", position + few_steps)
# when done, consider disconnecting
motors_bus.disconnect()
```
"""
def __init__(
self,
config: FeetechMotorsBusConfig,
):
self.port = config.port
self.motors = config.motors
self.mock = config.mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
self.port_handler = None
self.packet_handler = None
self.calibration = None
self.is_connected = False
self.group_readers = {}
self.group_writers = {}
self.logs = {}
self.track_positions = {}
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
self.port_handler = scs.PortHandler(self.port)
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
try:
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
except Exception:
traceback.print_exc()
print(
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
)
raise
# Allow to read and write
self.is_connected = True
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
def reconnect(self):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
self.port_handler = scs.PortHandler(self.port)
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
self.is_connected = True
def are_motors_configured(self):
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
# a ConnectionError will be raised anyway.
try:
return (self.motor_indices == self.read("ID")).all()
except ConnectionError as e:
print(e)
return False
def find_motor_indices(self, possible_ids=None, num_retry=2):
if possible_ids is None:
possible_ids = range(MAX_ID_RANGE)
indices = []
for idx in tqdm.tqdm(possible_ids):
try:
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
except ConnectionError:
continue
if idx != present_idx:
# sanity check
raise OSError(
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
)
indices.append(idx)
return indices
def set_bus_baudrate(self, baudrate):
present_bus_baudrate = self.port_handler.getBaudRate()
if present_bus_baudrate != baudrate:
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
self.port_handler.setBaudRate(baudrate)
if self.port_handler.getBaudRate() != baudrate:
raise OSError("Failed to write bus baud rate.")
@property
def motor_names(self) -> list[str]:
return list(self.motors.keys())
@property
def motor_models(self) -> list[str]:
return [model for _, model in self.motors.values()]
@property
def motor_indices(self) -> list[int]:
return [idx for idx, _ in self.motors.values()]
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31[ to
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
values[i] += homing_offset
# Convert from range ]-resolution, resolution[ to
# universal float32 centered degree range ]-180, 180[
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Rescale the present position to a nominal range [0, 100] %,
# useful for joints with linear motions like Aloha gripper
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
f"but present value is {values[i]} %. "
"This might be due to a cable connection issue creating an artificial jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
upp_factor = (
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Subtract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from nominal lnear range of [0, 100] % to
# actual motor range of values which can be arbitrary.
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
values = np.round(values).astype(np.int32)
return values
def avoid_rotation_reset(self, values, motor_names, data_name):
if data_name not in self.track_positions:
self.track_positions[data_name] = {
"prev": [None] * len(self.motor_names),
# Assume False at initialization
"below_zero": [False] * len(self.motor_names),
"above_max": [False] * len(self.motor_names),
}
track = self.track_positions[data_name]
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
idx = self.motor_names.index(name)
if track["prev"][idx] is None:
track["prev"][idx] = values[i]
continue
# Detect a full rotation occurred
if abs(track["prev"][idx] - values[i]) > 2048:
# Position went below 0 and got reset to 4095
if track["prev"][idx] < values[i]:
# So we set negative value by adding a full rotation
values[i] -= 4096
# Position went above 4095 and got reset to 0
elif track["prev"][idx] > values[i]:
# So we add a full rotation
values[i] += 4096
track["prev"][idx] = values[i]
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
return_list = True
if not isinstance(motor_ids, list):
return_list = False
motor_ids = [motor_ids]
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = scs.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
for idx in motor_ids:
group.addParam(idx)
for _ in range(num_retry):
comm = group.txRxPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = group.getData(idx, addr, bytes)
values.append(value)
if return_list:
return values
else:
return values[0]
def read(self, data_name, motor_names: str | list[str] | None = None):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
if data_name not in self.group_readers:
# Very Important to flush the buffer!
self.port_handler.ser.reset_output_buffer()
self.port_handler.ser.reset_input_buffer()
# create new group reader
self.group_readers[group_key] = scs.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
for idx in motor_ids:
self.group_readers[group_key].addParam(idx)
for _ in range(NUM_READ_RETRY):
comm = self.group_readers[group_key].txRxPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = self.group_readers[group_key].getData(idx, addr, bytes)
values.append(value)
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED:
values = self.avoid_rotation_reset(values, motor_names, data_name)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration_autocorrect(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# log the utc time at which the data was received
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
return values
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if not isinstance(motor_ids, list):
motor_ids = [motor_ids]
if not isinstance(values, list):
values = [values]
assert_same_address(self.model_ctrl_table, motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = scs.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
group.addParam(idx, data)
for _ in range(num_retry):
comm = group.txPacket()
if comm == scs.COMM_SUCCESS:
break
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
if isinstance(values, (int, float, np.integer)):
values = [int(values)] * len(motor_names)
values = np.array(values)
motor_ids = []
models = []
for name in motor_names:
motor_idx, model = self.motors[name]
motor_ids.append(motor_idx)
models.append(model)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.revert_calibration(values, motor_names)
values = values.tolist()
assert_same_address(self.model_ctrl_table, models, data_name)
addr, bytes = self.model_ctrl_table[model][data_name]
group_key = get_group_sync_key(data_name, motor_names)
init_group = data_name not in self.group_readers
if init_group:
self.group_writers[group_key] = scs.GroupSyncWrite(
self.port_handler, self.packet_handler, addr, bytes
)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes, self.mock)
if init_group:
self.group_writers[group_key].addParam(idx, data)
else:
self.group_writers[group_key].changeParam(idx, data)
comm = self.group_writers[group_key].txPacket()
if comm != scs.COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
# log the number of seconds it took to write the data to the motors
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
self.logs[delta_ts_name] = time.perf_counter() - start_time
# TODO(rcadene): should we log the time before sending the write command?
# log the utc time when the write has been completed
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
self.logs[ts_utc_name] = capture_timestamp_utc()
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)
if self.port_handler is not None:
self.port_handler.closePort()
self.port_handler = None
self.packet_handler = None
self.group_readers = {}
self.group_writers = {}
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@ -1,613 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass, field
from typing import Sequence
import draccus
from lerobot.common.robot_devices.cameras.configs import (
CameraConfig,
IntelRealSenseCameraConfig,
OpenCVCameraConfig,
)
from lerobot.common.robot_devices.motors.configs import (
DynamixelMotorsBusConfig,
FeetechMotorsBusConfig,
MotorsBusConfig,
)
@dataclass
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
# TODO(rcadene, aliberts): remove ManipulatorRobotConfig abstraction
@dataclass
class ManipulatorRobotConfig(RobotConfig):
leader_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
follower_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
cameras: dict[str, CameraConfig] = field(default_factory=lambda: {})
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
# as the number of motors in your follower arms (assumes all follower arms have the same number of
# motors).
max_relative_target: list[float] | float | None = None
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
# gripper is not put in torque mode.
gripper_open_degree: float | None = None
mock: bool = False
def __post_init__(self):
if self.mock:
for arm in self.leader_arms.values():
if not arm.mock:
arm.mock = True
for arm in self.follower_arms.values():
if not arm.mock:
arm.mock = True
for cam in self.cameras.values():
if not cam.mock:
cam.mock = True
if self.max_relative_target is not None and isinstance(self.max_relative_target, Sequence):
for name in self.follower_arms:
if len(self.follower_arms[name].motors) != len(self.max_relative_target):
raise ValueError(
f"len(max_relative_target)={len(self.max_relative_target)} but the follower arm with name {name} has "
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
f"`max_relative_target` list has as many parameters as there are motors per arm. "
"Note: This feature does not yet work with robots where different follower arms have "
"different numbers of motors."
)
@RobotConfig.register_subclass("aloha")
@dataclass
class AlohaRobotConfig(ManipulatorRobotConfig):
# Specific to Aloha, LeRobot comes with default calibration files. Assuming the motors have been
# properly assembled, no manual calibration step is expected. If you need to run manual calibration,
# simply update this path to ".cache/calibration/aloha"
calibration_dir: str = ".cache/calibration/aloha_default"
# /!\ FOR SAFETY, READ THIS /!\
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
# For Aloha, for every goal position request, motor rotations are capped at 5 degrees by default.
# When you feel more confident with teleoperation or running the policy, you can extend
# this safety limit and even removing it by setting it to `null`.
# Also, everything is expected to work safely out-of-the-box, but we highly advise to
# first try to teleoperate the grippers only (by commenting out the rest of the motors in this yaml),
# then to gradually add more motors (by uncommenting), until you can teleoperate both arms fully
max_relative_target: int | None = 5
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
# window_x
port="/dev/ttyDXL_leader_left",
motors={
# name: (index, model)
"waist": [1, "xm430-w350"],
"shoulder": [2, "xm430-w350"],
"shoulder_shadow": [3, "xm430-w350"],
"elbow": [4, "xm430-w350"],
"elbow_shadow": [5, "xm430-w350"],
"forearm_roll": [6, "xm430-w350"],
"wrist_angle": [7, "xm430-w350"],
"wrist_rotate": [8, "xl430-w250"],
"gripper": [9, "xc430-w150"],
},
),
"right": DynamixelMotorsBusConfig(
# window_x
port="/dev/ttyDXL_leader_right",
motors={
# name: (index, model)
"waist": [1, "xm430-w350"],
"shoulder": [2, "xm430-w350"],
"shoulder_shadow": [3, "xm430-w350"],
"elbow": [4, "xm430-w350"],
"elbow_shadow": [5, "xm430-w350"],
"forearm_roll": [6, "xm430-w350"],
"wrist_angle": [7, "xm430-w350"],
"wrist_rotate": [8, "xl430-w250"],
"gripper": [9, "xc430-w150"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/ttyDXL_follower_left",
motors={
# name: (index, model)
"waist": [1, "xm540-w270"],
"shoulder": [2, "xm540-w270"],
"shoulder_shadow": [3, "xm540-w270"],
"elbow": [4, "xm540-w270"],
"elbow_shadow": [5, "xm540-w270"],
"forearm_roll": [6, "xm540-w270"],
"wrist_angle": [7, "xm540-w270"],
"wrist_rotate": [8, "xm430-w350"],
"gripper": [9, "xm430-w350"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/ttyDXL_follower_right",
motors={
# name: (index, model)
"waist": [1, "xm540-w270"],
"shoulder": [2, "xm540-w270"],
"shoulder_shadow": [3, "xm540-w270"],
"elbow": [4, "xm540-w270"],
"elbow_shadow": [5, "xm540-w270"],
"forearm_roll": [6, "xm540-w270"],
"wrist_angle": [7, "xm540-w270"],
"wrist_rotate": [8, "xm430-w350"],
"gripper": [9, "xm430-w350"],
},
),
}
)
# Troubleshooting: If one of your IntelRealSense cameras freeze during
# data recording due to bandwidth limit, you might need to plug the camera
# on another USB hub or PCIe card.
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"cam_high": IntelRealSenseCameraConfig(
serial_number=128422271347,
fps=30,
width=640,
height=480,
),
"cam_low": IntelRealSenseCameraConfig(
serial_number=130322270656,
fps=30,
width=640,
height=480,
),
"cam_left_wrist": IntelRealSenseCameraConfig(
serial_number=218622272670,
fps=30,
width=640,
height=480,
),
"cam_right_wrist": IntelRealSenseCameraConfig(
serial_number=130322272300,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("koch")
@dataclass
class KochRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/koch"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0085511",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
# ~ Koch specific settings ~
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
gripper_open_degree: float = 35.156
mock: bool = False
@RobotConfig.register_subclass("koch_bimanual")
@dataclass
class KochBimanualRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/koch_bimanual"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0085511",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
# ~ Koch specific settings ~
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
gripper_open_degree: float = 35.156
mock: bool = False
@RobotConfig.register_subclass("moss")
@dataclass
class MossRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/moss"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("so100")
@dataclass
class So100RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so100"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("stretch")
@dataclass
class StretchRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"navigation": OpenCVCameraConfig(
camera_index="/dev/hello-nav-head-camera",
fps=10,
width=1280,
height=720,
rotation=-90,
),
"head": IntelRealSenseCameraConfig(
name="Intel RealSense D435I",
fps=30,
width=640,
height=480,
rotation=90,
),
"wrist": IntelRealSenseCameraConfig(
name="Intel RealSense D405",
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "192.168.0.193"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
),
"wrist": OpenCVCameraConfig(
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/ttyACM0",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False

View File

@ -1,498 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Logic to calibrate a robot arm built with feetech motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import time
import numpy as np
from lerobot.common.robot_devices.motors.feetech import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
count = 0
while True:
present_pos = arm.read("Present_Position", motor_name)
if positive_direction:
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
arm.write("Goal_Position", present_pos + 100, motor_name)
else:
arm.write("Goal_Position", present_pos - 100, motor_name)
if while_move_hook is not None:
while_move_hook()
present_pos = arm.read("Present_Position", motor_name).item()
present_speed = arm.read("Present_Speed", motor_name).item()
present_current = arm.read("Present_Current", motor_name).item()
# present_load = arm.read("Present_Load", motor_name).item()
# present_voltage = arm.read("Present_Voltage", motor_name).item()
# present_temperature = arm.read("Present_Temperature", motor_name).item()
# print(f"{present_pos=}")
# print(f"{present_speed=}")
# print(f"{present_current=}")
# print(f"{present_load=}")
# print(f"{present_voltage=}")
# print(f"{present_temperature=}")
if present_speed == 0 and present_current > 40:
count += 1
if count > 100 or present_current > 300:
return present_pos
else:
count = 0
def move_to_calibrate(
arm,
motor_name,
invert_drive_mode=False,
positive_first=True,
in_between_move_hook=None,
while_move_hook=None,
):
initial_pos = arm.read("Present_Position", motor_name)
if positive_first:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
else:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
if in_between_move_hook is not None:
in_between_move_hook()
if positive_first:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
else:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
zero_pos = (n_present_pos + p_present_pos) / 2
calib_data = {
"initial_pos": initial_pos,
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
"invert_drive_mode": invert_drive_mode,
"drive_mode": -1 if invert_drive_mode else 0,
"zero_pos": zero_pos,
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
}
return calib_data
def apply_offset(calib, offset):
calib["zero_pos"] += offset
if calib["drive_mode"]:
calib["homing_offset"] += offset
else:
calib["homing_offset"] -= offset
return calib
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
if robot_type == "so100":
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
elif robot_type == "moss":
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
else:
raise ValueError(robot_type)
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "so100" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
print(f'{arm.read("Present_Position", "elbow_flex")=}')
calib = {}
init_wf_pos = arm.read("Present_Position", "wrist_flex")
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
init_ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
time.sleep(2)
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
def in_between_move_hook():
nonlocal arm, calib
time.sleep(2)
ef_pos = arm.read("Present_Position", "elbow_flex")
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
time.sleep(2)
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
)
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
time.sleep(1)
def in_between_move_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm,
"shoulder_lift",
invert_drive_mode=True,
positive_first=False,
in_between_move_hook=in_between_move_hook,
)
# add an 30 steps as offset to align with body
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
def while_move_hook():
nonlocal arm, calib
positions = {
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
"gripper": round(calib["gripper"]["end_pos"]),
}
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
time.sleep(2)
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
time.sleep(2)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "moss" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
time.sleep(2)
calib = {}
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
wr_pos = arm.read("Present_Position", "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
time.sleep(1)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
def in_between_move_elbow_flex_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm,
"elbow_flex",
invert_drive_mode=True,
in_between_move_hook=in_between_move_elbow_flex_hook,
)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
def in_between_move_shoulder_lift_hook():
nonlocal arm, calib
sl = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
time.sleep(1)
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
)
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
time.sleep(2)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "so100", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
homing_offset = zero_target_pos - zero_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
homing_offset = rotated_target_pos - rotated_drived_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
return calib_dict

View File

@ -1,208 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from dataclasses import replace
import torch
from stretch_body.gamepad_teleop import GamePadTeleop
from stretch_body.robot import Robot as StretchAPI
from stretch_body.robot_params import RobotParams
from lerobot.common.robot_devices.robots.configs import StretchRobotConfig
class StretchRobot(StretchAPI):
"""Wrapper of stretch_body.robot.Robot"""
def __init__(self, config: StretchRobotConfig | None = None, **kwargs):
super().__init__()
if config is None:
self.config = StretchRobotConfig(**kwargs)
else:
# Overwrite config arguments using kwargs
self.config = replace(config, **kwargs)
self.robot_type = self.config.type
self.cameras = self.config.cameras
self.is_connected = False
self.teleop = None
self.logs = {}
# TODO(aliberts): test this
RobotParams.set_logging_level("WARNING")
RobotParams.set_logging_formatter("brief_console_formatter")
self.state_keys = None
self.action_keys = None
def connect(self) -> None:
self.is_connected = self.startup()
if not self.is_connected:
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
raise ConnectionError()
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = self.is_connected and self.cameras[name].is_connected
if not self.is_connected:
print("Could not connect to the cameras, check that all cameras are plugged-in.")
raise ConnectionError()
self.run_calibration()
def run_calibration(self) -> None:
if not self.is_homed():
self.home()
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
# TODO(aliberts): return ndarrays instead of torch.Tensors
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
before_read_t = time.perf_counter()
state = self.get_state()
action = self.teleop.gamepad_controller.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
before_write_t = time.perf_counter()
self.teleop.do_motion(robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
if self.state_keys is None:
self.state_keys = list(state)
if not record_data:
return
state = torch.as_tensor(list(state.values()))
action = torch.as_tensor(list(action.values()))
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionaries
obs_dict, action_dict = {}, {}
obs_dict["observation.state"] = state
action_dict["action"] = action
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict, action_dict
def get_state(self) -> dict:
status = self.get_status()
return {
"head_pan.pos": status["head"]["head_pan"]["pos"],
"head_tilt.pos": status["head"]["head_tilt"]["pos"],
"lift.pos": status["lift"]["pos"],
"arm.pos": status["arm"]["pos"],
"wrist_pitch.pos": status["end_of_arm"]["wrist_pitch"]["pos"],
"wrist_roll.pos": status["end_of_arm"]["wrist_roll"]["pos"],
"wrist_yaw.pos": status["end_of_arm"]["wrist_yaw"]["pos"],
"gripper.pos": status["end_of_arm"]["stretch_gripper"]["pos"],
"base_x.vel": status["base"]["x_vel"],
"base_y.vel": status["base"]["y_vel"],
"base_theta.vel": status["base"]["theta_vel"],
}
def capture_observation(self) -> dict:
# TODO(aliberts): return ndarrays instead of torch.Tensors
before_read_t = time.perf_counter()
state = self.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
if self.state_keys is None:
self.state_keys = list(state)
state = torch.as_tensor(list(state.values()))
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionaries
obs_dict = {}
obs_dict["observation.state"] = state
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
# TODO(aliberts): return ndarrays instead of torch.Tensors
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
if self.action_keys is None:
dummy_action = self.teleop.gamepad_controller.get_state()
self.action_keys = list(dummy_action.keys())
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
before_write_t = time.perf_counter()
self.teleop.do_motion(state=action_dict, robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
# TODO(aliberts): return action_sent when motion is limited
return action
def print_logs(self) -> None:
pass
# TODO(aliberts): move robot-specific logs logic here
def teleop_safety_stop(self) -> None:
if self.teleop is not None:
self.teleop._safety_stop(robot=self)
def disconnect(self) -> None:
self.stop()
if self.teleop is not None:
self.teleop.gamepad_controller.stop()
self.teleop.stop()
if len(self.cameras) > 0:
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False
def __del__(self):
self.disconnect()

View File

@ -1,86 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Protocol
from lerobot.common.robot_devices.robots.configs import (
AlohaRobotConfig,
KochBimanualRobotConfig,
KochRobotConfig,
LeKiwiRobotConfig,
ManipulatorRobotConfig,
MossRobotConfig,
RobotConfig,
So100RobotConfig,
StretchRobotConfig,
)
def get_arm_id(name, arm_type):
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
"""
return f"{name}_{arm_type}"
class Robot(Protocol):
# TODO(rcadene, aliberts): Add unit test checking the protocol is implemented in the corresponding classes
robot_type: str
features: dict
def connect(self): ...
def run_calibration(self): ...
def teleop_step(self, record_data=False): ...
def capture_observation(self): ...
def send_action(self, action): ...
def disconnect(self): ...
def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
if robot_type == "aloha":
return AlohaRobotConfig(**kwargs)
elif robot_type == "koch":
return KochRobotConfig(**kwargs)
elif robot_type == "koch_bimanual":
return KochBimanualRobotConfig(**kwargs)
elif robot_type == "moss":
return MossRobotConfig(**kwargs)
elif robot_type == "so100":
return So100RobotConfig(**kwargs)
elif robot_type == "stretch":
return StretchRobotConfig(**kwargs)
elif robot_type == "lekiwi":
return LeKiwiRobotConfig(**kwargs)
else:
raise ValueError(f"Robot type '{robot_type}' is not available.")
def make_robot_from_config(config: RobotConfig):
if isinstance(config, ManipulatorRobotConfig):
from lerobot.common.robot_devices.robots.manipulator import ManipulatorRobot
return ManipulatorRobot(config)
elif isinstance(config, LeKiwiRobotConfig):
from lerobot.common.robot_devices.robots.mobile_manipulator import MobileManipulator
return MobileManipulator(config)
else:
from lerobot.common.robot_devices.robots.stretch import StretchRobot
return StretchRobot(config)
def make_robot(robot_type: str, **kwargs) -> Robot:
config = make_robot_config(robot_type, **kwargs)
return make_robot_from_config(config)

View File

@ -0,0 +1,4 @@
from .config import RobotConfig
from .robot import Robot
__all__ = ["RobotConfig", "Robot"]

View File

@ -0,0 +1,17 @@
import abc
from dataclasses import dataclass
from pathlib import Path
import draccus
@dataclass(kw_only=True)
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
# Allows to distinguish between different robots of the same type
id: str | None = None
# Directory to store calibration file
calibration_dir: Path | None = None
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)

View File

@ -0,0 +1,2 @@
from .config_koch_follower import KochFollowerConfig
from .koch_follower import KochFollower

View File

@ -0,0 +1,22 @@
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("koch_follower")
@dataclass
class KochFollowerConfig(RobotConfig):
# Port to connect to the arm
port: str
disable_torque_on_disconnect: bool = True
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# cameras
cameras: dict[str, CameraConfig] = field(default_factory=dict)

View File

@ -0,0 +1,231 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from typing import Any
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.dynamixel import (
DynamixelMotorsBus,
OperatingMode,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .config_koch_follower import KochFollowerConfig
logger = logging.getLogger(__name__)
class KochFollower(Robot):
"""
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
"""
config_class = KochFollowerConfig
name = "koch_follower"
def __init__(self, config: KochFollowerConfig):
super().__init__(config)
self.config = config
self.arm = DynamixelMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": Motor(1, "xl430-w250", MotorNormMode.RANGE_M100_100),
"shoulder_lift": Motor(2, "xl430-w250", MotorNormMode.RANGE_M100_100),
"elbow_flex": Motor(3, "xl330-m288", MotorNormMode.RANGE_M100_100),
"wrist_flex": Motor(4, "xl330-m288", MotorNormMode.RANGE_M100_100),
"wrist_roll": Motor(5, "xl330-m288", MotorNormMode.RANGE_M100_100),
"gripper": Motor(6, "xl330-m288", MotorNormMode.RANGE_0_100),
},
calibration=self.calibration,
)
self.cameras = make_cameras_from_configs(config.cameras)
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def is_connected(self) -> bool:
# TODO(aliberts): add cam.is_connected for cam in self.cameras
return self.arm.is_connected
def connect(self) -> None:
"""
We assume that at connection time, arm is in a rest position,
and torque can be safely disabled to run calibration.
"""
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
for cam in self.cameras.values():
cam.connect()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.arm.is_calibrated
def calibrate(self) -> None:
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motors = ["shoulder_pan", "wrist_roll"]
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
logger.info(
f"Move all joints except {full_turn_motors} sequentially through their entire "
"ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
for name in full_turn_motors:
range_mins[name] = 0
range_maxes[name] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
logger.info(f"Calibration saved to {self.calibration_fpath}")
def configure(self) -> None:
self.arm.disable_torque()
self.arm.configure_motors()
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos
# can't rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while
# assembling the arm, you could end up with a servo with a position 0 or 4095 at a crucial
# point
for name in self.arm.names:
if name != "gripper":
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
# Use 'position control current based' for gripper to be limited by the limit of the current.
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
# its goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
# to make it move, and it will move back to its original target position when we release the force.
self.arm.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
# Set better PID values to close the gap between recorded states and actions
# TODO(rcadene): Implement an automatic procedure to set optimal PID values for each motor
self.arm.write("Position_P_Gain", "elbow_flex", 1500)
self.arm.write("Position_I_Gain", "elbow_flex", 0)
self.arm.write("Position_D_Gain", "elbow_flex", 600)
self.arm.enable_torque()
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
obs_dict = {}
# Read arm position
start = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
start = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def send_action(self, action: dict[str, float]) -> dict[str, float]:
"""Command arm to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (dict[str, float]): The goal positions for the motors.
Returns:
dict[str, float]: The action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.sync_read("Present_Position")
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
# Send goal position to the arm
self.arm.sync_write("Goal_Position", goal_pos)
return goal_pos
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.arm.disconnect(self.config.disable_torque_on_disconnect)
for cam in self.cameras.values():
cam.disconnect()
logger.info(f"{self} disconnected.")

View File

@ -0,0 +1,89 @@
from dataclasses import dataclass, field
from lerobot.common.cameras.configs import CameraConfig
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.common.motors.configs import FeetechMotorsBusConfig, MotorsBusConfig
from lerobot.common.robots.config import RobotConfig
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "192.168.0.193"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
),
"wrist": OpenCVCameraConfig(
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/ttyACM0",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False

View File

@ -21,7 +21,7 @@ from pathlib import Path
import cv2
import zmq
from lerobot.common.robot_devices.robots.mobile_manipulator import LeKiwi
from lerobot.common.robots.mobile_manipulator import LeKiwi
def setup_zmq_sockets(config):
@ -61,7 +61,7 @@ def calibrate_follower_arm(motors_bus, calib_dir_str):
calib_dir.mkdir(parents=True, exist_ok=True)
calib_file = calib_dir / "main_follower.json"
try:
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
except ImportError:
print("[WARNING] Calibration function not available. Skipping calibration.")
return
@ -72,7 +72,7 @@ def calibrate_follower_arm(motors_bus, calib_dir_str):
print(f"[INFO] Loaded calibration from {calib_file}")
else:
print("[INFO] Calibration file not found. Running manual calibration...")
calibration = run_arm_manual_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
calibration = run_full_arm_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
print(f"[INFO] Calibration complete. Saving to {calib_file}")
with open(calib_file, "w") as f:
json.dump(calibration, f)
@ -93,8 +93,8 @@ def run_lekiwi(robot_config):
- Processes incoming commands (arm and wheel commands) and sends back sensor and camera data.
"""
# Import helper functions and classes
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus, TorqueMode
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus, TorqueMode
# Initialize cameras from the robot configuration.
cameras = make_cameras_from_configs(robot_config.cameras)

View File

@ -0,0 +1,692 @@
import base64
import json
import os
import sys
from pathlib import Path
import cv2
import numpy as np
import torch
import zmq
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceNotConnectedError
from lerobot.common.motors.feetech.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from lerobot.common.robots.utils import get_arm_id
PYNPUT_AVAILABLE = True
try:
# Only import if there's a valid X server or if we're not on a Pi
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
print("No DISPLAY set. Skipping pynput import.")
raise ImportError("pynput blocked intentionally due to no display.")
from pynput import keyboard
except ImportError:
keyboard = None
PYNPUT_AVAILABLE = False
except Exception as e:
keyboard = None
PYNPUT_AVAILABLE = False
print(f"Could not import pynput: {e}")
class MobileManipulator:
"""
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
The robot includes a three omniwheel mobile base and a remote follower arm.
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
forwarded to the remote follower arm (after applying a safety clamp).
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
"""
def __init__(self, config: LeKiwiRobotConfig):
"""
Expected keys in config:
- ip, port, video_port for the remote connection.
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
"""
self.robot_type = config.type
self.config = config
self.remote_ip = config.ip
self.remote_port = config.port
self.remote_port_video = config.video_port
self.calibration_dir = Path(self.config.calibration_dir)
self.logs = {}
self.teleop_keys = self.config.teleop_keys
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
self.cameras = make_cameras_from_configs(self.config.cameras)
self.is_connected = False
self.last_frames = {}
self.last_present_speed = {}
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
# Define three speed levels and a current index
self.speed_levels = [
{"xy": 0.1, "theta": 30}, # slow
{"xy": 0.2, "theta": 60}, # medium
{"xy": 0.3, "theta": 90}, # fast
]
self.speed_index = 0 # Start at slow
# ZeroMQ context and sockets.
self.context = None
self.cmd_socket = None
self.video_socket = None
# Keyboard state for base teleoperation.
self.running = True
self.pressed_keys = {
"forward": False,
"backward": False,
"left": False,
"right": False,
"rotate_left": False,
"rotate_right": False,
}
if PYNPUT_AVAILABLE:
print("pynput is available - enabling local keyboard listener.")
self.listener = keyboard.Listener(
on_press=self.on_press,
on_release=self.on_release,
)
self.listener.start()
else:
print("pynput not available - skipping local keyboard listener.")
self.listener = None
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
@property
def camera_features(self) -> dict:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
follower_arm_names = [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper",
]
observations = ["x_mm", "y_mm", "theta"]
combined_names = follower_arm_names + observations
return {
"action": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
}
@property
def features(self):
return {**self.motor_features, **self.camera_features}
@property
def has_camera(self):
return len(self.cameras) > 0
@property
def num_cameras(self):
return len(self.cameras)
@property
def available_arms(self):
available = []
for name in self.leader_arms:
available.append(get_arm_id(name, "leader"))
for name in self.follower_arms:
available.append(get_arm_id(name, "follower"))
return available
def on_press(self, key):
try:
# Movement
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = True
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = True
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = True
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = True
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = True
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = True
# Quit teleoperation
elif key.char == self.teleop_keys["quit"]:
self.running = False
return False
# Speed control
elif key.char == self.teleop_keys["speed_up"]:
self.speed_index = min(self.speed_index + 1, 2)
print(f"Speed index increased to {self.speed_index}")
elif key.char == self.teleop_keys["speed_down"]:
self.speed_index = max(self.speed_index - 1, 0)
print(f"Speed index decreased to {self.speed_index}")
except AttributeError:
# e.g., if key is special like Key.esc
if key == keyboard.Key.esc:
self.running = False
return False
def on_release(self, key):
try:
if hasattr(key, "char"):
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = False
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = False
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = False
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = False
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = False
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = False
except AttributeError:
pass
def connect(self):
if not self.leader_arms:
raise ValueError("MobileManipulator has no leader arm to connect.")
for name in self.leader_arms:
print(f"Connecting {name} leader arm.")
self.calibrate_leader()
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
self.context = zmq.Context()
self.cmd_socket = self.context.socket(zmq.PUSH)
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
self.cmd_socket.connect(connection_string)
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.video_socket = self.context.socket(zmq.PULL)
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
self.video_socket.connect(video_connection)
self.video_socket.setsockopt(zmq.CONFLATE, 1)
print(
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
)
self.is_connected = True
def load_or_run_calibration_(self, name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
def calibrate_leader(self):
for name, arm in self.leader_arms.items():
# Connect the bus
arm.connect()
# Disable torque on all motors
for motor_id in arm.motors:
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
# Now run calibration
calibration = self.load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def calibrate_follower(self):
for name, bus in self.follower_arms.items():
bus.connect()
# Disable torque on all motors
for motor_id in bus.motors:
bus.write("Torque_Enable", 0, motor_id)
# Then filter out wheels
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
if not arm_only_dict:
continue
original_motors = bus.motors
bus.motors = arm_only_dict
calibration = self.load_or_run_calibration_(name, bus, "follower")
bus.set_calibration(calibration)
bus.motors = original_motors
def _get_data(self):
"""
Polls the video socket for up to 15 ms. If data arrives, decode only
the *latest* message, returning frames, speed, and arm state. If
nothing arrives for any field, use the last known values.
"""
frames = {}
present_speed = {}
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
# Poll up to 15 ms
poller = zmq.Poller()
poller.register(self.video_socket, zmq.POLLIN)
socks = dict(poller.poll(15))
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
# No new data arrived → reuse ALL old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Drain all messages, keep only the last
last_msg = None
while True:
try:
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
last_msg = obs_string
except zmq.Again:
break
if not last_msg:
# No new message → also reuse old
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Decode only the final message
try:
observation = json.loads(last_msg)
images_dict = observation.get("images", {})
new_speed = observation.get("present_speed", {})
new_arm_state = observation.get("follower_arm_state", None)
# Convert images
for cam_name, image_b64 in images_dict.items():
if image_b64:
jpg_data = base64.b64decode(image_b64)
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if frame_candidate is not None:
frames[cam_name] = frame_candidate
# If remote_arm_state is None and frames is None there is no message then use the previous message
if new_arm_state is not None and frames is not None:
self.last_frames = frames
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
self.last_remote_arm_state = remote_arm_state_tensor
present_speed = new_speed
self.last_present_speed = new_speed
else:
frames = self.last_frames
remote_arm_state_tensor = self.last_remote_arm_state
present_speed = self.last_present_speed
except Exception as e:
print(f"[DEBUG] Error decoding video message: {e}")
# If decode fails, fall back to old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return frames, present_speed, remote_arm_state_tensor
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
state_tensor = torch.zeros(3, dtype=torch.int32)
if present_speed:
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
if "1" in decoded:
state_tensor[0] = decoded["1"]
if "2" in decoded:
state_tensor[1] = decoded["2"]
if "3" in decoded:
state_tensor[2] = decoded["3"]
return state_tensor
def teleop_step(
self, record_data: bool = False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
# Prepare to assign the position of the leader to the follower
arm_positions = []
for name in self.leader_arms:
pos = self.leader_arms[name].read("Present_Position")
pos_tensor = torch.from_numpy(pos).float()
# Instead of pos_tensor.item(), use tolist() to convert the entire tensor to a list
arm_positions.extend(pos_tensor.tolist())
# (The rest of your code for generating wheel commands remains unchanged)
x_cmd = 0.0 # m/s forward/backward
y_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.pressed_keys["forward"]:
x_cmd += xy_speed
if self.pressed_keys["backward"]:
x_cmd -= xy_speed
if self.pressed_keys["left"]:
y_cmd += xy_speed
if self.pressed_keys["right"]:
y_cmd -= xy_speed
if self.pressed_keys["rotate_left"]:
theta_cmd += theta_speed
if self.pressed_keys["rotate_right"]:
theta_cmd -= theta_speed
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
self.cmd_socket.send_string(json.dumps(message))
if not record_data:
return
obs_dict = self.capture_observation()
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
wheel_velocity_mm = (
wheel_velocity_tuple[0] * 1000.0,
wheel_velocity_tuple[1] * 1000.0,
wheel_velocity_tuple[2],
)
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
action_dict = {"action": action_tensor}
return obs_dict, action_dict
def capture_observation(self) -> dict:
"""
Capture observations from the remote robot: current follower arm positions,
present wheel speeds (converted to body-frame velocities: x, y, theta),
and a camera frame.
"""
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
frames, present_speed, remote_arm_state_tensor = self._get_data()
body_state = self.wheel_raw_to_body(present_speed)
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
obs_dict = {"observation.state": combined_state_tensor}
# Loop over each configured camera
for cam_name, cam in self.cameras.items():
frame = frames.get(cam_name, None)
if frame is None:
# Create a black image using the camera's configured width, height, and channels
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
# Ensure the action tensor has at least 9 elements:
# - First 6: arm positions.
# - Last 3: base commands.
if action.numel() < 9:
# Pad with zeros if there are not enough elements.
padded = torch.zeros(9, dtype=action.dtype)
padded[: action.numel()] = action
action = padded
# Extract arm and base actions.
arm_actions = action[:6].flatten()
base_actions = action[6:].flatten()
x_cmd_mm = base_actions[0].item() # mm/s
y_cmd_mm = base_actions[1].item() # mm/s
theta_cmd = base_actions[2].item() # deg/s
# Convert mm/s to m/s for the kinematics calculations.
x_cmd = x_cmd_mm / 1000.0 # m/s
y_cmd = y_cmd_mm / 1000.0 # m/s
# Compute wheel commands from body commands.
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
arm_positions_list = arm_actions.tolist()
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
self.cmd_socket.send_string(json.dumps(message))
return action
def print_logs(self):
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError("Not connected.")
if self.cmd_socket:
stop_cmd = {
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
"arm_positions": {},
}
self.cmd_socket.send_string(json.dumps(stop_cmd))
self.cmd_socket.close()
if self.video_socket:
self.video_socket.close()
if self.context:
self.context.term()
if PYNPUT_AVAILABLE:
self.listener.stop()
self.is_connected = False
print("[INFO] Disconnected from remote robot.")
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if PYNPUT_AVAILABLE:
self.listener.stop()
@staticmethod
def degps_to_raw(degps: float) -> int:
steps_per_deg = 4096.0 / 360.0
speed_in_steps = abs(degps) * steps_per_deg
speed_int = int(round(speed_in_steps))
if speed_int > 0x7FFF:
speed_int = 0x7FFF
if degps < 0:
return speed_int | 0x8000
else:
return speed_int & 0x7FFF
@staticmethod
def raw_to_degps(raw_speed: int) -> float:
steps_per_deg = 4096.0 / 360.0
magnitude = raw_speed & 0x7FFF
degps = magnitude / steps_per_deg
if raw_speed & 0x8000:
degps = -degps
return degps
def body_to_wheel_raw(
self,
x_cmd: float,
y_cmd: float,
theta_cmd: float,
wheel_radius: float = 0.05,
base_radius: float = 0.125,
max_raw: int = 3000,
) -> dict:
"""
Convert desired body-frame velocities into wheel raw commands.
Parameters:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity (deg/s).
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the center of rotation to each wheel (meters).
max_raw : Maximum allowed raw command (ticks) per wheel.
Returns:
A dictionary with wheel raw commands:
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
Notes:
- Internally, the method converts theta_cmd to rad/s for the kinematics.
- The raw command is computed from the wheels angular speed in deg/s
using degps_to_raw(). If any command exceeds max_raw, all commands
are scaled down proportionally.
"""
# Convert rotational velocity from deg/s to rad/s.
theta_rad = theta_cmd * (np.pi / 180.0)
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Compute each wheels linear speed (m/s) and then its angular speed (rad/s).
wheel_linear_speeds = m.dot(velocity_vector)
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
# Convert wheel angular speeds from rad/s to deg/s.
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
# Scaling
steps_per_deg = 4096.0 / 360.0
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
max_raw_computed = max(raw_floats)
if max_raw_computed > max_raw:
scale = max_raw / max_raw_computed
wheel_degps = wheel_degps * scale
# Convert each wheels angular speed (deg/s) to a raw integer.
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
def wheel_raw_to_body(
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
) -> tuple:
"""
Convert wheel raw command feedback back into body-frame velocities.
Parameters:
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the robot center to each wheel (meters).
Returns:
A tuple (x_cmd, y_cmd, theta_cmd) where:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity in deg/s.
"""
# Extract the raw values in order.
raw_list = [
int(wheel_raw.get("left_wheel", 0)),
int(wheel_raw.get("back_wheel", 0)),
int(wheel_raw.get("right_wheel", 0)),
]
# Convert each raw command back to an angular speed in deg/s.
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
# Convert from deg/s to rad/s.
wheel_radps = wheel_degps * (np.pi / 180.0)
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
m_inv = np.linalg.inv(m)
velocity_vector = m_inv.dot(wheel_linear_speeds)
x_cmd, y_cmd, theta_rad = velocity_vector
theta_cmd = theta_rad * (180.0 / np.pi)
return (x_cmd, y_cmd, theta_cmd)
class LeKiwi:
def __init__(self, motor_bus):
"""
Initializes the LeKiwi with Feetech motors bus.
"""
self.motor_bus = motor_bus
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
# Initialize motors in velocity mode.
self.motor_bus.write("Lock", 0)
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
self.motor_bus.write("Lock", 1)
print("Motors set to velocity mode.")
def read_velocity(self):
"""
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
"""
raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids)
return {
"left_wheel": int(raw_speeds[0]),
"back_wheel": int(raw_speeds[1]),
"right_wheel": int(raw_speeds[2]),
}
def set_velocity(self, command_speeds):
"""
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
The order of speeds must correspond to self.motor_ids.
"""
self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids)
def stop(self):
"""Stops the robot by setting all motor speeds to zero."""
self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids)
print("Motors stopped.")

View File

@ -18,40 +18,66 @@ and send orders to its motors.
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
# calibration procedure, to make it easy for people to add their own robot.
import json
import logging
import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Sequence
import numpy as np
import torch
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
from lerobot.common.robot_devices.robots.configs import ManipulatorRobotConfig
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.cameras.configs import CameraConfig
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors.configs import MotorsBusConfig
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.config import RobotConfig
from lerobot.common.robots.utils import ensure_safe_goal_position, get_arm_id
def ensure_safe_goal_position(
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
):
# Cap relative action target magnitude for safety.
diff = goal_pos - present_pos
max_relative_target = torch.tensor(max_relative_target)
safe_diff = torch.minimum(diff, max_relative_target)
safe_diff = torch.maximum(safe_diff, -max_relative_target)
safe_goal_pos = present_pos + safe_diff
@dataclass
class ManipulatorRobotConfig(RobotConfig):
leader_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
follower_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
cameras: dict[str, CameraConfig] = field(default_factory=lambda: {})
if not torch.allclose(goal_pos, safe_goal_pos):
logging.warning(
"Relative goal position magnitude had to be clamped to be safe.\n"
f" requested relative goal position target: {diff}\n"
f" clamped relative goal position target: {safe_diff}"
)
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
# as the number of motors in your follower arms (assumes all follower arms have the same number of
# motors).
max_relative_target: list[float] | float | None = None
return safe_goal_pos
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
# gripper is not put in torque mode.
gripper_open_degree: float | None = None
mock: bool = False
def __post_init__(self):
if self.mock:
for arm in self.leader_arms.values():
if not arm.mock:
arm.mock = True
for arm in self.follower_arms.values():
if not arm.mock:
arm.mock = True
for cam in self.cameras.values():
if not cam.mock:
cam.mock = True
if self.max_relative_target is not None and isinstance(self.max_relative_target, Sequence):
for name in self.follower_arms:
if len(self.follower_arms[name].motors) != len(self.max_relative_target):
raise ValueError(
f"len(max_relative_target)={len(self.max_relative_target)} but the follower arm with name {name} has "
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
f"`max_relative_target` list has as many parameters as there are motors per arm. "
"Note: This feature does not yet work with robots where different follower arms have "
"different numbers of motors."
)
class ManipulatorRobot:
@ -224,7 +250,7 @@ class ManipulatorRobot:
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
@ -242,9 +268,9 @@ class ManipulatorRobot:
self.leader_arms[name].connect()
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
from lerobot.common.motors.dynamixel.dynamixel import TorqueMode
elif self.robot_type in ["so100", "moss", "lekiwi"]:
from lerobot.common.robot_devices.motors.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech import TorqueMode
# We assume that at connection time, arms are in a rest position, and torque can
# be safely disabled to run calibration and/or set robot preset configurations.
@ -253,8 +279,6 @@ class ManipulatorRobot:
for name in self.leader_arms:
self.leader_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
self.activate_calibration()
# Set robot preset (e.g. torque in leader gripper for Koch v1.1)
if self.robot_type in ["koch", "koch_bimanual"]:
self.set_koch_robot_preset()
@ -291,52 +315,9 @@ class ManipulatorRobot:
self.is_connected = True
def activate_calibration(self):
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
def load_or_run_calibration_(name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
# TODO(rcadene): display a warning in __init__ if calibration file not available
print(f"Missing calibration file '{arm_calib_path}'")
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
elif self.robot_type in ["so100", "moss", "lekiwi"]:
from lerobot.common.robot_devices.robots.feetech_calibration import (
run_arm_manual_calibration,
)
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
for name, arm in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm, "follower")
arm.set_calibration(calibration)
for name, arm in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def set_koch_robot_preset(self):
def set_operating_mode_(arm):
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
from lerobot.common.motors.dynamixel.dynamixel import TorqueMode
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
@ -434,9 +415,6 @@ class ManipulatorRobot:
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.follower_arms[name].write("I_Coefficient", 0)
self.follower_arms[name].write("D_Coefficient", 32)
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
self.follower_arms[name].write("Lock", 0)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.follower_arms[name].write("Maximum_Acceleration", 254)
@ -446,7 +424,7 @@ class ManipulatorRobot:
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
@ -526,7 +504,7 @@ class ManipulatorRobot:
def capture_observation(self):
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
@ -572,7 +550,7 @@ class ManipulatorRobot:
action: tensor containing the concatenated goal positions for the follower arms.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
@ -607,7 +585,7 @@ class ManipulatorRobot:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)

View File

@ -23,13 +23,14 @@ import numpy as np
import torch
import zmq
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.feetech import TorqueMode
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceNotConnectedError
from lerobot.common.motors.feetech.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from lerobot.common.robots.utils import get_arm_id
PYNPUT_AVAILABLE = True
try:
@ -266,7 +267,7 @@ class MobileManipulator:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
@ -395,7 +396,7 @@ class MobileManipulator:
self, record_data: bool = False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise RobotDeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
@ -455,7 +456,7 @@ class MobileManipulator:
and a camera frame.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
frames, present_speed, remote_arm_state_tensor = self._get_data()
@ -479,7 +480,7 @@ class MobileManipulator:
def send_action(self, action: torch.Tensor) -> torch.Tensor:
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
# Ensure the action tensor has at least 9 elements:
# - First 6: arm positions.
@ -517,7 +518,7 @@ class MobileManipulator:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected.")
raise DeviceNotConnectedError("Not connected.")
if self.cmd_socket:
stop_cmd = {
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},

View File

@ -132,7 +132,7 @@ python lerobot/scripts/configure_motor.py \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
--id 1
```
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
@ -144,7 +144,7 @@ python lerobot/scripts/configure_motor.py \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
--id 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.

View File

@ -0,0 +1,4 @@
from .configuration_moss import MossRobotConfig
from .robot_moss import MossRobot
__all__ = ["MossRobotConfig", "MossRobot"]

View File

@ -0,0 +1,30 @@
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("moss")
@dataclass
class MossRobotConfig(RobotConfig):
# Port to connect to the robot
port: str
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
mock: bool = False
# motors
shoulder_pan: tuple = (1, "sts3215")
shoulder_lift: tuple = (2, "sts3215")
elbow_flex: tuple = (3, "sts3215")
wrist_flex: tuple = (4, "sts3215")
wrist_roll: tuple = (5, "sts3215")
gripper: tuple = (6, "sts3215")
# cameras
cameras: dict[str, CameraConfig] = field(default_factory=dict)

View File

@ -0,0 +1,223 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import numpy as np
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import TorqueMode
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
apply_feetech_offsets_from_calibration,
run_full_arm_calibration,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .configuration_moss import MossRobotConfig
class MossRobot(Robot):
"""
[Moss Arm](https://github.com/jess-moss/moss-robot-arms) designed by Jess Moss
"""
config_class = MossRobotConfig
name = "moss"
def __init__(self, config: MossRobotConfig):
super().__init__(config)
self.config = config
self.robot_type = config.type
self.arm = FeetechMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": config.shoulder_pan,
"shoulder_lift": config.shoulder_lift,
"elbow_flex": config.elbow_flex,
"wrist_flex": config.wrist_flex,
"wrist_roll": config.wrist_roll,
"gripper": config.gripper,
},
)
self.cameras = make_cameras_from_configs(config.cameras)
self.is_connected = False
self.logs = {}
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
logging.info("Connecting arm.")
self.arm.connect()
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.arm.write("Torque_Enable", TorqueMode.DISABLED.value)
self.calibrate()
# Mode=0 for Position Control
self.arm.write("Mode", 0)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.arm.write("P_Coefficient", 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.arm.write("I_Coefficient", 0)
self.arm.write("D_Coefficient", 32)
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
self.arm.write("Lock", 0)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.arm.write("Maximum_Acceleration", 254)
self.arm.write("Acceleration", 254)
logging.info("Activating torque.")
self.arm.write("Torque_Enable", TorqueMode.ENABLED.value)
# Check arm can be read
self.arm.read("Present_Position")
# Connect the cameras
for cam in self.cameras.values():
cam.connect()
self.is_connected = True
def calibrate(self) -> None:
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
if self.calibration_fpath.exists():
with open(self.calibration_fpath) as f:
calibration = json.load(f)
else:
# TODO(rcadene): display a warning in __init__ if calibration file not available
logging.info(f"Missing calibration file '{self.calibration_fpath}'")
calibration = run_full_arm_calibration(self.arm, self.robot_type, self.name, "follower")
logging.info(f"Calibration is done! Saving calibration file '{self.calibration_fpath}'")
self.calibration_fpath.parent.mkdir(parents=True, exist_ok=True)
with open(self.calibration_fpath, "w") as f:
json.dump(calibration, f)
self.arm.set_calibration(calibration)
apply_feetech_offsets_from_calibration(self.arm, calibration)
def get_observation(self) -> dict[str, np.ndarray]:
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
obs_dict = {}
# Read arm position
before_read_t = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.read("Present_Position")
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
# Capture images from cameras
for cam_key, cam in self.cameras.items():
before_camread_t = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
return obs_dict
def send_action(self, action: np.ndarray) -> np.ndarray:
"""Command arm to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (np.ndarray): array containing the goal positions for the motors.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.read("Present_Position")
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
# Send goal position to the arm
self.arm.write("Goal_Position", goal_pos.astype(np.int32))
return goal_pos
def print_logs(self):
# TODO(aliberts): move robot-specific logs logic here
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)
self.arm.disconnect()
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False

View File

@ -0,0 +1,95 @@
import abc
from pathlib import Path
from typing import Any
import draccus
from lerobot.common.constants import HF_LEROBOT_CALIBRATION, ROBOTS
from lerobot.common.motors import MotorCalibration
from .config import RobotConfig
# TODO(aliberts): action/obs typing such as Generic[ObsType, ActType] similar to gym.Env ?
# https://github.com/Farama-Foundation/Gymnasium/blob/3287c869f9a48d99454306b0d4b4ec537f0f35e3/gymnasium/core.py#L23
class Robot(abc.ABC):
"""The main LeRobot class for implementing robots."""
# Set these in ALL subclasses
config_class: RobotConfig
name: str
def __init__(self, config: RobotConfig):
self.robot_type = self.name
self.id = config.id
self.calibration_dir = (
config.calibration_dir if config.calibration_dir else HF_LEROBOT_CALIBRATION / ROBOTS / self.name
)
self.calibration_dir.mkdir(parents=True, exist_ok=True)
self.calibration_fpath = self.calibration_dir / f"{self.id}.json"
self.calibration: dict[str, MotorCalibration] = {}
if self.calibration_fpath.is_file():
self._load_calibration()
def __str__(self) -> str:
return f"{self.id} {self.__class__.__name__}"
# TODO(aliberts): create a proper Feature class for this that links with datasets
@abc.abstractproperty
def state_feature(self) -> dict:
pass
@abc.abstractproperty
def action_feature(self) -> dict:
pass
@abc.abstractproperty
def camera_features(self) -> dict[str, dict]:
pass
@abc.abstractproperty
def is_connected(self) -> bool:
pass
@abc.abstractmethod
def connect(self) -> None:
"""Connects to the robot."""
pass
@abc.abstractproperty
def is_calibrated(self) -> bool:
pass
@abc.abstractmethod
def calibrate(self) -> None:
"""Calibrates the robot."""
pass
def _load_calibration(self, fpath: Path | None = None) -> None:
fpath = self.calibration_fpath if fpath is None else fpath
with open(fpath) as f, draccus.config_type("json"):
self.calibration = draccus.load(dict[str, MotorCalibration], f)
def _save_calibration(self, fpath: Path | None = None) -> None:
fpath = self.calibration_fpath if fpath is None else fpath
with open(fpath, "w") as f, draccus.config_type("json"):
draccus.dump(self.calibration, f, indent=4)
@abc.abstractmethod
def configure(self) -> None:
pass
@abc.abstractmethod
def get_observation(self) -> dict[str, Any]:
"""Gets observation from the robot."""
pass
@abc.abstractmethod
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
"""Sends actions to the robot."""
pass
@abc.abstractmethod
def disconnect(self) -> None:
"""Disconnects from the robot."""
pass

View File

@ -185,7 +185,7 @@ python lerobot/scripts/configure_motor.py \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
--id 1
```
> [!NOTE]
@ -198,7 +198,7 @@ python lerobot/scripts/configure_motor.py \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
--id 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.

View File

@ -0,0 +1,2 @@
from .config_so100_follower import SO100FollowerConfig
from .so100_follower import SO100Follower

View File

@ -0,0 +1,22 @@
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("so100_follower")
@dataclass
class SO100FollowerConfig(RobotConfig):
# Port to connect to the arm
port: str
disable_torque_on_disconnect: bool = True
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# cameras
cameras: dict[str, CameraConfig] = field(default_factory=dict)

View File

@ -0,0 +1,220 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from typing import Any
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
OperatingMode,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .config_so100_follower import SO100FollowerConfig
logger = logging.getLogger(__name__)
class SO100Follower(Robot):
"""
[SO-100 Follower Arm](https://github.com/TheRobotStudio/SO-ARM100) designed by TheRobotStudio
"""
config_class = SO100FollowerConfig
name = "so100_follower"
def __init__(self, config: SO100FollowerConfig):
super().__init__(config)
self.config = config
self.arm = FeetechMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": Motor(1, "sts3215", MotorNormMode.RANGE_M100_100),
"shoulder_lift": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
"elbow_flex": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
"wrist_flex": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
"wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
"gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
},
)
self.cameras = make_cameras_from_configs(config.cameras)
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def is_connected(self) -> bool:
# TODO(aliberts): add cam.is_connected for cam in self.cameras
return self.arm.is_connected
def connect(self) -> None:
"""
We assume that at connection time, arm is in a rest position,
and torque can be safely disabled to run calibration.
"""
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
# Connect the cameras
for cam in self.cameras.values():
cam.connect()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.arm.is_calibrated
def calibrate(self) -> None:
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.POSITION.value)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motor = "wrist_roll"
unknown_range_motors = [name for name in self.arm.names if name != full_turn_motor]
logger.info(
f"Move all joints except '{full_turn_motor}' sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
range_mins[full_turn_motor] = 0
range_maxes[full_turn_motor] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
print("Calibration saved to", self.calibration_fpath)
def configure(self) -> None:
self.arm.disable_torque()
self.arm.configure_motors()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.POSITION.value)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.arm.write("P_Coefficient", name, 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.arm.write("I_Coefficient", name, 0)
self.arm.write("D_Coefficient", name, 32)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this address is not in the official STS3215 Memory Table
self.arm.write("Maximum_Acceleration", name, 254)
self.arm.write("Acceleration", name, 254)
self.arm.enable_torque()
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
obs_dict = {}
# Read arm position
start = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
start = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
"""Command arm to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.sync_read("Present_Position")
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
# Send goal position to the arm
self.arm.sync_write("Goal_Position", goal_pos)
return goal_pos
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.arm.disconnect(self.config.disable_torque_on_disconnect)
for cam in self.cameras.values():
cam.disconnect()
logger.info(f"{self} disconnected.")

View File

@ -0,0 +1,44 @@
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from lerobot.common.cameras.intel import RealSenseCameraConfig
from lerobot.common.cameras.opencv import OpenCVCameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("stretch3")
@dataclass
class Stretch3RobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# cameras
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"navigation": OpenCVCameraConfig(
camera_index="/dev/hello-nav-head-camera",
fps=10,
width=1280,
height=720,
rotation=-90,
),
"head": RealSenseCameraConfig(
name="Intel RealSense D435I",
fps=30,
width=640,
height=480,
rotation=90,
),
"wrist": RealSenseCameraConfig(
name="Intel RealSense D405",
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False

View File

@ -0,0 +1,183 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import numpy as np
from stretch_body.gamepad_teleop import GamePadTeleop
from stretch_body.robot import Robot as StretchAPI
from stretch_body.robot_params import RobotParams
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.datasets.utils import get_nested_item
from ..robot import Robot
from .configuration_stretch3 import Stretch3RobotConfig
# {lerobot_keys: stretch.api.keys}
STRETCH_MOTORS = {
"head_pan.pos": "head.head_pan.pos",
"head_tilt.pos": "head.head_tilt.pos",
"lift.pos": "lift.pos",
"arm.pos": "arm.pos",
"wrist_pitch.pos": "end_of_arm.wrist_pitch.pos",
"wrist_roll.pos": "end_of_arm.wrist_roll.pos",
"wrist_yaw.pos": "end_of_arm.wrist_yaw.pos",
"gripper.pos": "end_of_arm.stretch_gripper.pos",
"base_x.vel": "base.x_vel",
"base_y.vel": "base.y_vel",
"base_theta.vel": "base.theta_vel",
}
class Stretch3Robot(Robot):
"""[Stretch 3](https://hello-robot.com/stretch-3-product), by Hello Robot."""
config_class = Stretch3RobotConfig
name = "stretch3"
def __init__(self, config: Stretch3RobotConfig):
super().__init__(config)
self.config = config
self.robot_type = self.config.type
self.api = StretchAPI()
self.cameras = make_cameras_from_configs(config.cameras)
self.is_connected = False
self.logs = {}
self.teleop = None # TODO remove
# TODO(aliberts): test this
RobotParams.set_logging_level("WARNING")
RobotParams.set_logging_formatter("brief_console_formatter")
self.state_keys = None
self.action_keys = None
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(STRETCH_MOTORS),),
"names": {"motors": list(STRETCH_MOTORS)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
def connect(self) -> None:
self.is_connected = self.api.startup()
if not self.is_connected:
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
raise ConnectionError()
for cam in self.cameras.values():
cam.connect()
self.is_connected = self.is_connected and cam.is_connected
if not self.is_connected:
print("Could not connect to the cameras, check that all cameras are plugged-in.")
raise ConnectionError()
self.calibrate()
def calibrate(self) -> None:
if not self.api.is_homed():
self.api.home()
def _get_state(self) -> dict:
status = self.api.get_status()
return {k: get_nested_item(status, v, sep=".") for k, v in STRETCH_MOTORS.items()}
def get_observation(self) -> dict[str, np.ndarray]:
obs_dict = {}
# Read Stretch state
before_read_t = time.perf_counter()
state = self._get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
if self.state_keys is None:
self.state_keys = list(state)
state = np.asarray(list(state.values()))
obs_dict[OBS_STATE] = state
# Capture images from cameras
for cam_key, cam in self.cameras.items():
before_camread_t = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
return obs_dict
def send_action(self, action: np.ndarray) -> np.ndarray:
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
if self.action_keys is None:
dummy_action = self.teleop.gamepad_controller.get_state()
self.action_keys = list(dummy_action.keys())
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
before_write_t = time.perf_counter()
self.teleop.do_motion(state=action_dict, robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
# TODO(aliberts): return action_sent when motion is limited
return action
def print_logs(self) -> None:
pass
# TODO(aliberts): move robot-specific logs logic here
def teleop_safety_stop(self) -> None:
if self.teleop is not None:
self.teleop._safety_stop(robot=self)
def disconnect(self) -> None:
self.api.stop()
if self.teleop is not None:
self.teleop.gamepad_controller.stop()
self.teleop.stop()
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False

View File

@ -0,0 +1,117 @@
import logging
from pprint import pformat
from typing import Protocol
from lerobot.common.robots import RobotConfig
def get_arm_id(name, arm_type):
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
"""
return f"{name}_{arm_type}"
# TODO(aliberts): Remove and point to lerobot.common.robots.Robot
class Robot(Protocol):
robot_type: str
features: dict
def connect(self): ...
def run_calibration(self): ...
def teleop_step(self, record_data=False): ...
def capture_observation(self): ...
def send_action(self, action): ...
def disconnect(self): ...
def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
if robot_type == "aloha":
from .aloha.configuration_aloha import AlohaRobotConfig
return AlohaRobotConfig(**kwargs)
elif robot_type == "koch_follower":
from .koch.config_koch_follower import KochFollowerConfig
return KochFollowerConfig(**kwargs)
# elif robot_type == "koch_bimanual":
# return KochBimanualRobotConfig(**kwargs)
elif robot_type == "moss":
from .moss.configuration_moss import MossRobotConfig
return MossRobotConfig(**kwargs)
elif robot_type == "so100_leader":
from .so100.config_so100_follower import SO100FollowerConfig
return SO100FollowerConfig(**kwargs)
elif robot_type == "stretch":
from .stretch3.configuration_stretch3 import Stretch3RobotConfig
return Stretch3RobotConfig(**kwargs)
elif robot_type == "lekiwi":
from .lekiwi.configuration_lekiwi import LeKiwiRobotConfig
return LeKiwiRobotConfig(**kwargs)
else:
raise ValueError(f"Robot type '{robot_type}' is not available.")
def make_robot_from_config(config: RobotConfig):
from .lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from .manipulator import ManipulatorRobotConfig
if isinstance(config, ManipulatorRobotConfig):
from lerobot.common.robots.manipulator import ManipulatorRobot
return ManipulatorRobot(config)
elif isinstance(config, LeKiwiRobotConfig):
from lerobot.common.robots.mobile_manipulator import MobileManipulator
return MobileManipulator(config)
else:
from lerobot.common.robots.stretch3.robot_stretch3 import Stretch3Robot
return Stretch3Robot(config)
def make_robot(robot_type: str, **kwargs) -> Robot:
config = make_robot_config(robot_type, **kwargs)
return make_robot_from_config(config)
def ensure_safe_goal_position(
goal_present_pos: dict[str, tuple[float, float]], max_relative_target: float | dict[float]
) -> dict[str, float]:
"""Caps relative action target magnitude for safety."""
if isinstance(max_relative_target, float):
diff_cap = {key: max_relative_target for key in goal_present_pos}
elif isinstance(max_relative_target, dict):
if not set(goal_present_pos) == set(max_relative_target):
raise ValueError("max_relative_target keys must match those of goal_present_pos.")
diff_cap = max_relative_target
else:
raise TypeError(max_relative_target)
warnings_dict = {}
safe_goal_positions = {}
for key, (goal_pos, present_pos) in goal_present_pos.items():
diff = goal_pos - present_pos
max_diff = diff_cap[key]
safe_diff = min(diff, max_diff)
safe_diff = max(safe_diff, -max_diff)
safe_goal_pos = present_pos + safe_diff
safe_goal_positions[key] = safe_goal_pos
if abs(safe_goal_pos - goal_pos) > 1e-4:
warnings_dict[key] = {
"original goal_pos": goal_pos,
"safe goal_pos": safe_goal_pos,
}
if warnings_dict:
logging.warning(
"Relative goal position magnitude had to be clamped to be safe.\n"
f"{pformat(warnings_dict, indent=4)}"
)
return safe_goal_positions

View File

@ -0,0 +1,2 @@
from .config_viperx import ViperXConfig
from .viperx import ViperX

View File

@ -0,0 +1,31 @@
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("viperx")
@dataclass
class ViperXConfig(RobotConfig):
port: str # Port to connect to the arm
disable_torque_on_disconnect: bool = True
# /!\ FOR SAFETY, READ THIS /!\
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
# For Aloha, for every goal position request, motor rotations are capped at 5 degrees by default.
# When you feel more confident with teleoperation or running the policy, you can extend
# this safety limit and even removing it by setting it to `null`.
# Also, everything is expected to work safely out-of-the-box, but we highly advise to
# first try to teleoperate the grippers only (by commenting out the rest of the motors in this yaml),
# then to gradually add more motors (by uncommenting), until you can teleoperate both arms fully
max_relative_target: int | None = 5
# cameras
cameras: dict[str, CameraConfig] = field(default_factory=dict)
# Troubleshooting: If one of your IntelRealSense cameras freeze during
# data recording due to bandwidth limit, you might need to plug the camera
# on another USB hub or PCIe card.

View File

@ -0,0 +1,230 @@
"""Contains logic to instantiate a robot, read information from its motors and cameras,
and send orders to its motors.
"""
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
# calibration procedure, to make it easy for people to add their own robot.
import logging
import time
from typing import Any
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.dynamixel import (
DynamixelMotorsBus,
OperatingMode,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .config_viperx import ViperXConfig
logger = logging.getLogger(__name__)
class ViperX(Robot):
"""
[ViperX](https://www.trossenrobotics.com/viperx-300) developed by Trossen Robotics
"""
config_class = ViperXConfig
name = "viperx"
def __init__(
self,
config: ViperXConfig,
):
super().__init__(config)
self.config = config
self.arm = DynamixelMotorsBus(
port=self.config.port,
motors={
"waist": Motor(1, "xm540-w270", MotorNormMode.RANGE_M100_100),
"shoulder": Motor(2, "xm540-w270", MotorNormMode.RANGE_M100_100),
"shoulder_shadow": Motor(3, "xm540-w270", MotorNormMode.RANGE_M100_100),
"elbow": Motor(4, "xm540-w270", MotorNormMode.RANGE_M100_100),
"elbow_shadow": Motor(5, "xm540-w270", MotorNormMode.RANGE_M100_100),
"forearm_roll": Motor(6, "xm540-w270", MotorNormMode.RANGE_M100_100),
"wrist_angle": Motor(7, "xm540-w270", MotorNormMode.RANGE_M100_100),
"wrist_rotate": Motor(8, "xm430-w350", MotorNormMode.RANGE_M100_100),
"gripper": Motor(9, "xm430-w350", MotorNormMode.RANGE_0_100),
},
)
self.cameras = make_cameras_from_configs(config.cameras)
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def is_connected(self) -> bool:
# TODO(aliberts): add cam.is_connected for cam in self.cameras
return self.arm.is_connected
def connect(self) -> None:
"""
We assume that at connection time, arm is in a rest position,
and torque can be safely disabled to run calibration.
"""
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
for cam in self.cameras.values():
cam.connect()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.arm.is_calibrated
def calibrate(self) -> None:
raise NotImplementedError # TODO(aliberts): adapt code below (copied from koch
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motors = ["shoulder_pan", "wrist_roll"]
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
logger.info(
f"Move all joints except {full_turn_motors} sequentially through their entire "
"ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
for name in full_turn_motors:
range_mins[name] = 0
range_maxes[name] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
logger.info(f"Calibration saved to {self.calibration_fpath}")
def configure(self) -> None:
self.arm.disable_torque()
self.arm.configure_motors()
# Set secondary/shadow ID for shoulder and elbow. These joints have two motors.
# As a result, if only one of them is required to move to a certain position,
# the other will follow. This is to avoid breaking the motors.
self.arm.write("Secondary_ID", "shoulder_shadow", 2)
self.arm.write("Secondary_ID", "elbow_shadow", 4)
# Set a velocity limit of 131 as advised by Trossen Robotics
# TODO(aliberts): remove as it's actually useless in position control
self.arm.write("Velocity_Limit", 131)
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
# you could end up with a servo with a position 0 or 4095 at a crucial point. See:
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11
for name in self.arm.names:
if name != "gripper":
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
# Use 'position control current based' for follower gripper to be limited by the limit of the current.
# It can grasp an object without forcing too much even tho, it's goal position is a complete grasp
# (both gripper fingers are ordered to join and reach a touch).
self.arm.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
self.arm.enable_torque()
def get_observation(self) -> dict[str, Any]:
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
obs_dict = {}
# Read arm position
start = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
start = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def send_action(self, action: dict[str, float]) -> dict[str, float]:
"""Command arm to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (dict[str, float]): The goal positions for the motors.
Returns:
dict[str, float]: The action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.sync_read("Present_Position")
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
# Send goal position to the arm
self.arm.sync_write("Goal_Position", goal_pos)
return goal_pos
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.arm.disconnect(self.config.disable_torque_on_disconnect)
for cam in self.cameras.values():
cam.disconnect()
logger.info(f"{self} disconnected.")

View File

@ -0,0 +1,4 @@
from .config import TeleoperatorConfig
from .teleoperator import Teleoperator
__all__ = ["TeleoperatorConfig", "Teleoperator"]

View File

@ -0,0 +1,17 @@
import abc
from dataclasses import dataclass
from pathlib import Path
import draccus
@dataclass(kw_only=True)
class TeleoperatorConfig(draccus.ChoiceRegistry, abc.ABC):
# Allows to distinguish between different teleoperators of the same type
id: str | None = None
# Directory to store calibration file
calibration_dir: Path | None = None
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)

View File

@ -0,0 +1,4 @@
from .configuration_keyboard import KeyboardTeleopConfig
from .teleop_keyboard import KeyboardTeleop
__all__ = ["KeyboardTeleopConfig", "KeyboardTeleop"]

View File

@ -0,0 +1,25 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from ..config import TeleoperatorConfig
@TeleoperatorConfig.register_subclass("keyboard")
@dataclass
class KeyboardTeleopConfig(TeleoperatorConfig):
mock: bool = False

View File

@ -0,0 +1,142 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import time
from queue import Queue
import numpy as np
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..teleoperator import Teleoperator
from .configuration_keyboard import KeyboardTeleopConfig
PYNPUT_AVAILABLE = True
try:
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
logging.info("No DISPLAY set. Skipping pynput import.")
raise ImportError("pynput blocked intentionally due to no display.")
from pynput import keyboard
except ImportError:
keyboard = None
PYNPUT_AVAILABLE = False
except Exception as e:
keyboard = None
PYNPUT_AVAILABLE = False
logging.info(f"Could not import pynput: {e}")
class KeyboardTeleop(Teleoperator):
"""
Teleop class to use keyboard inputs for control.
"""
config_class = KeyboardTeleopConfig
name = "keyboard"
def __init__(self, config: KeyboardTeleopConfig):
super().__init__(config)
self.config = config
self.robot_type = config.type
self.event_queue = Queue()
self.current_pressed = {}
self.listener = None
self.is_connected = False
self.logs = {}
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def feedback_feature(self) -> dict:
return {}
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
if PYNPUT_AVAILABLE:
logging.info("pynput is available - enabling local keyboard listener.")
self.listener = keyboard.Listener(
on_press=self.on_press,
on_release=self.on_release,
)
self.listener.start()
else:
logging.info("pynput not available - skipping local keyboard listener.")
self.listener = None
self.is_connected = True
def calibrate(self) -> None:
pass
def on_press(self, key):
if hasattr(key, "char"):
self.event_queue.put((key.char, True))
def on_release(self, key):
if hasattr(key, "char"):
self.event_queue.put((key.char, False))
if key == keyboard.Key.esc:
logging.info("ESC pressed, disconnecting.")
self.disconnect()
def _drain_pressed_keys(self):
while not self.event_queue.empty():
key_char, is_pressed = self.event_queue.get_nowait()
self.current_pressed[key_char] = is_pressed
def get_action(self) -> np.ndarray:
before_read_t = time.perf_counter()
if not self.is_connected:
raise DeviceNotConnectedError(
"KeyboardTeleop is not connected. You need to run `connect()` before `get_action()`."
)
self._drain_pressed_keys()
# Generate action based on current key states
action = {key for key, val in self.current_pressed.items() if val}
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
return np.array(list(action))
def send_feedback(self, feedback: np.ndarray) -> None:
pass
def disconnect(self) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(
"KeyboardTeleop is not connected. You need to run `robot.connect()` before `disconnect()`."
)
if self.listener is not None:
self.listener.stop()
self.is_connected = False

View File

@ -0,0 +1,28 @@
import logging
import time
from lerobot.common.teleoperators.keyboard import KeyboardTeleop, KeyboardTeleopConfig
def main():
logging.info("Configuring Keyboard Teleop")
keyboard_config = KeyboardTeleopConfig()
keyboard = KeyboardTeleop(keyboard_config)
logging.info("Connecting Keyboard Teleop")
keyboard.connect()
logging.info("Starting Keyboard capture")
i = 0
while i < 20:
action = keyboard.get_action()
print("Captured keys: %s", action)
time.sleep(1)
i += 1
keyboard.disconnect()
logging.info("Finished LeKiwiRobot cleanly")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,2 @@
from .config_koch_leader import KochLeaderConfig
from .koch_leader import KochLeader

View File

@ -0,0 +1,30 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from ..config import TeleoperatorConfig
@TeleoperatorConfig.register_subclass("koch_leader")
@dataclass
class KochLeaderConfig(TeleoperatorConfig):
# Port to connect to the arm
port: str
# Sets the arm in torque mode with the gripper motor set to this value. This makes it possible to squeeze
# the gripper and have it spring back to an open position on its own.
gripper_open_pos: float = 50.0

View File

@ -0,0 +1,168 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.dynamixel import (
DriveMode,
DynamixelMotorsBus,
OperatingMode,
)
from ..teleoperator import Teleoperator
from .config_koch_leader import KochLeaderConfig
logger = logging.getLogger(__name__)
class KochLeader(Teleoperator):
"""
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
"""
config_class = KochLeaderConfig
name = "koch_leader"
def __init__(self, config: KochLeaderConfig):
super().__init__(config)
self.config = config
self.arm = DynamixelMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": Motor(1, "xl330-m077", MotorNormMode.RANGE_M100_100),
"shoulder_lift": Motor(2, "xl330-m077", MotorNormMode.RANGE_M100_100),
"elbow_flex": Motor(3, "xl330-m077", MotorNormMode.RANGE_M100_100),
"wrist_flex": Motor(4, "xl330-m077", MotorNormMode.RANGE_M100_100),
"wrist_roll": Motor(5, "xl330-m077", MotorNormMode.RANGE_M100_100),
"gripper": Motor(6, "xl330-m077", MotorNormMode.RANGE_0_100),
},
calibration=self.calibration,
)
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def feedback_feature(self) -> dict:
return {}
@property
def is_connected(self) -> bool:
return self.arm.is_connected
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.arm.is_calibrated
def calibrate(self) -> None:
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
self.arm.write("Drive_Mode", "elbow_flex", DriveMode.INVERTED.value)
drive_modes = {name: 1 if name == "elbow_flex" else 0 for name in self.arm.names}
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motors = ["shoulder_pan", "wrist_roll"]
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
logger.info(
f"Move all joints except {full_turn_motors} sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
for name in full_turn_motors:
range_mins[name] = 0
range_maxes[name] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=drive_modes[name],
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
logger.info(f"Calibration saved to {self.calibration_fpath}")
def configure(self) -> None:
self.arm.disable_torque()
self.arm.configure_motors()
for name in self.arm.names:
if name != "gripper":
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos
# can't rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while
# assembling the arm, you could end up with a servo with a position 0 or 4095 at a crucial
# point
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
# Use 'position control current based' for gripper to be limited by the limit of the current.
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
# its goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
# to make it move, and it will move back to its original target position when we release the force.
self.arm.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
# Set gripper's goal pos in current position mode so that we can use it as a trigger.
self.arm.enable_torque("gripper")
self.arm.write("Goal_Position", "gripper", self.config.gripper_open_pos)
def get_action(self) -> dict[str, float]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
start = time.perf_counter()
action = self.arm.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read action: {dt_ms:.1f}ms")
return action
def send_feedback(self, feedback: dict[str, float]) -> None:
# TODO(rcadene, aliberts): Implement force feedback
raise NotImplementedError
def disconnect(self) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.arm.disconnect()
logger.info(f"{self} disconnected.")

View File

@ -0,0 +1,2 @@
from .config_so100_leader import SO100LeaderConfig
from .so100_leader import SO100Leader

View File

@ -0,0 +1,26 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from ..config import TeleoperatorConfig
@TeleoperatorConfig.register_subclass("so100_leader")
@dataclass
class SO100LeaderConfig(TeleoperatorConfig):
# Port to connect to the arm
port: str

View File

@ -0,0 +1,142 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
OperatingMode,
)
from ..teleoperator import Teleoperator
from .config_so100_leader import SO100LeaderConfig
logger = logging.getLogger(__name__)
class SO100Leader(Teleoperator):
"""
[SO-100 Leader Arm](https://github.com/TheRobotStudio/SO-ARM100) designed by TheRobotStudio
"""
config_class = SO100LeaderConfig
name = "so100_leader"
def __init__(self, config: SO100LeaderConfig):
super().__init__(config)
self.config = config
self.arm = FeetechMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": Motor(1, "sts3215", MotorNormMode.RANGE_M100_100),
"shoulder_lift": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
"elbow_flex": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
"wrist_flex": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
"wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
"gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
},
)
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def feedback_feature(self) -> dict:
return {}
@property
def is_connected(self) -> bool:
return self.arm.is_connected
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.arm.is_calibrated
def calibrate(self) -> None:
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.POSITION.value)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motor = "wrist_roll"
unknown_range_motors = [name for name in self.arm.names if name != full_turn_motor]
logger.info(
f"Move all joints except '{full_turn_motor}' sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
range_mins[full_turn_motor] = 0
range_maxes[full_turn_motor] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
logger.info(f"Calibration saved to {self.calibration_fpath}")
def configure(self) -> None:
self.arm.disable_torque()
self.arm.configure_motors()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.POSITION.value)
def get_action(self) -> dict[str, float]:
start = time.perf_counter()
action = self.arm.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read action: {dt_ms:.1f}ms")
return action
def send_feedback(self, feedback: dict[str, float]) -> None:
# TODO(rcadene, aliberts): Implement force feedback
raise NotImplementedError
def disconnect(self) -> None:
if not self.is_connected:
DeviceNotConnectedError(f"{self} is not connected.")
self.arm.disconnect()
logger.info(f"{self} disconnected.")

View File

@ -0,0 +1,4 @@
from .configuration_stretch3 import Stretch3GamePadConfig
from .teleop_stretch3 import Stretch3GamePad
__all__ = ["Stretch3GamePadConfig", "Stretch3GamePad"]

View File

@ -0,0 +1,25 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from ..config import TeleoperatorConfig
@TeleoperatorConfig.register_subclass("stretch3")
@dataclass
class Stretch3GamePadConfig(TeleoperatorConfig):
mock: bool = False

View File

@ -0,0 +1,120 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import numpy as np
from stretch_body.gamepad_teleop import GamePadTeleop
from stretch_body.robot_params import RobotParams
from lerobot.common.errors import DeviceAlreadyConnectedError
from ..teleoperator import Teleoperator
from .configuration_stretch3 import Stretch3GamePadConfig
# from stretch_body.gamepad_controller.GamePadController
GAMEPAD_BUTTONS = [
"middle_led_ring_button_pressed",
"left_stick_x",
"left_stick_y",
"right_stick_x",
"right_stick_y",
"left_stick_button_pressed",
"right_stick_button_pressed",
"bottom_button_pressed",
"top_button_pressed",
"left_button_pressed",
"right_button_pressed",
"left_shoulder_button_pressed",
"right_shoulder_button_pressed",
"select_button_pressed",
"start_button_pressed",
"left_trigger_pulled",
"right_trigger_pulled",
"bottom_pad_pressed",
"top_pad_pressed",
"left_pad_pressed",
"right_pad_pressed",
]
class Stretch3GamePad(Teleoperator):
"""[Stretch 3](https://hello-robot.com/stretch-3-product), by Hello Robot."""
config_class = Stretch3GamePadConfig
name = "stretch3"
def __init__(self, config: Stretch3GamePadConfig):
super().__init__(config)
self.config = config
self.robot_type = self.config.type
self.api = GamePadTeleop(robot_instance=False)
self.is_connected = False
self.logs = {}
# TODO(aliberts): test this
RobotParams.set_logging_level("WARNING")
RobotParams.set_logging_formatter("brief_console_formatter")
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(GAMEPAD_BUTTONS),),
"names": {"buttons": GAMEPAD_BUTTONS},
}
@property
def feedback_feature(self) -> dict:
return {}
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
self.api.startup()
self.api._update_state() # Check controller can be read & written
self.api._update_modes()
self.is_connected = True
def calibrate(self) -> None:
pass
def get_action(self) -> np.ndarray:
# Read Stretch state
before_read_t = time.perf_counter()
action = self.api.gamepad_controller.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
action = np.asarray(list(action.values()))
return action
def send_feedback(self, feedback: np.ndarray) -> None:
pass
def print_logs(self) -> None:
pass
# TODO(aliberts): move robot-specific logs logic here
def disconnect(self) -> None:
self.api.stop()
self.is_connected = False

View File

@ -0,0 +1,89 @@
import abc
from pathlib import Path
from typing import Any
import draccus
from lerobot.common.constants import HF_LEROBOT_CALIBRATION, TELEOPERATORS
from lerobot.common.motors.motors_bus import MotorCalibration
from .config import TeleoperatorConfig
class Teleoperator(abc.ABC):
"""The main LeRobot class for implementing teleoperation devices."""
# Set these in ALL subclasses
config_class: TeleoperatorConfig
name: str
def __init__(self, config: TeleoperatorConfig):
self.id = config.id
self.calibration_dir = (
config.calibration_dir
if config.calibration_dir
else HF_LEROBOT_CALIBRATION / TELEOPERATORS / self.name
)
self.calibration_dir.mkdir(parents=True, exist_ok=True)
self.calibration_fpath = self.calibration_dir / f"{self.id}.json"
self.calibration: dict[str, MotorCalibration] = {}
if self.calibration_fpath.is_file():
self._load_calibration()
def __str__(self) -> str:
return f"{self.id} {self.__class__.__name__}"
@abc.abstractproperty
def action_feature(self) -> dict:
pass
@abc.abstractproperty
def feedback_feature(self) -> dict:
pass
@abc.abstractproperty
def is_connected(self) -> bool:
pass
@abc.abstractmethod
def connect(self) -> None:
"""Connects to the teleoperator."""
pass
@abc.abstractproperty
def is_calibrated(self) -> bool:
pass
@abc.abstractmethod
def calibrate(self) -> None:
"""Calibrates the teleoperator."""
pass
def _load_calibration(self, fpath: Path | None = None) -> None:
fpath = self.calibration_fpath if fpath is None else fpath
with open(fpath) as f, draccus.config_type("json"):
self.calibration = draccus.load(dict[str, MotorCalibration], f)
def _save_calibration(self, fpath: Path | None = None) -> None:
fpath = self.calibration_fpath if fpath is None else fpath
with open(fpath, "w") as f, draccus.config_type("json"):
draccus.dump(self.calibration, f, indent=4)
@abc.abstractmethod
def configure(self) -> None:
pass
@abc.abstractmethod
def get_action(self) -> dict[str, Any]:
"""Gets the action to send to a teleoperator."""
pass
@abc.abstractmethod
def send_feedback(self, feedback: dict[str, Any]) -> None:
"""Sends feedback captured from a robot to the teleoperator."""
pass
@abc.abstractmethod
def disconnect(self) -> None:
"""Disconnects from the teleoperator."""
pass

View File

@ -0,0 +1,2 @@
from .config_widowx import WidowXConfig
from .widowx import WidowX

View File

@ -0,0 +1,25 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from ..config import TeleoperatorConfig
@TeleoperatorConfig.register_subclass("widowx")
@dataclass
class WidowXConfig(TeleoperatorConfig):
port: str # Port to connect to the arm

View File

@ -0,0 +1,153 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.dynamixel import (
DriveMode,
DynamixelMotorsBus,
OperatingMode,
)
from ..teleoperator import Teleoperator
from .config_widowx import WidowXConfig
logger = logging.getLogger(__name__)
class WidowX(Teleoperator):
"""
[WidowX](https://www.trossenrobotics.com/widowx-250) developed by Trossen Robotics
"""
config_class = WidowXConfig
name = "widowx"
def __init__(self, config: WidowXConfig):
super().__init__(config)
self.config = config
self.arm = DynamixelMotorsBus(
port=self.config.port,
motors={
"waist": Motor(1, "xm430-w350", MotorNormMode.RANGE_M100_100),
"shoulder": Motor(2, "xm430-w350", MotorNormMode.RANGE_M100_100),
"shoulder_shadow": Motor(3, "xm430-w350", MotorNormMode.RANGE_M100_100),
"elbow": Motor(4, "xm430-w350", MotorNormMode.RANGE_M100_100),
"elbow_shadow": Motor(5, "xm430-w350", MotorNormMode.RANGE_M100_100),
"forearm_roll": Motor(6, "xm430-w350", MotorNormMode.RANGE_M100_100),
"wrist_angle": Motor(7, "xm430-w350", MotorNormMode.RANGE_M100_100),
"wrist_rotate": Motor(8, "xl430-w250", MotorNormMode.RANGE_M100_100),
"gripper": Motor(9, "xc430-w150", MotorNormMode.RANGE_0_100),
},
)
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def feedback_feature(self) -> dict:
return {}
@property
def is_connected(self) -> bool:
return self.arm.is_connected
def connect(self):
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
self.configure()
logger.info(f"{self} connected.")
def calibrate(self) -> None:
raise NotImplementedError # TODO(aliberts): adapt code below (copied from koch)
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
self.arm.write("Drive_Mode", "elbow_flex", DriveMode.INVERTED.value)
drive_modes = {name: 1 if name == "elbow_flex" else 0 for name in self.arm.names}
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motors = ["shoulder_pan", "wrist_roll"]
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
logger.info(
f"Move all joints except {full_turn_motors} sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
for name in full_turn_motors:
range_mins[name] = 0
range_maxes[name] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=drive_modes[name],
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
logger.info(f"Calibration saved to {self.calibration_fpath}")
def configure(self) -> None:
self.arm.disable_torque()
self.arm.configure_motors()
# Set secondary/shadow ID for shoulder and elbow. These joints have two motors.
# As a result, if only one of them is required to move to a certain position,
# the other will follow. This is to avoid breaking the motors.
self.arm.write("Secondary_ID", "shoulder_shadow", 2)
self.arm.write("Secondary_ID", "elbow_shadow", 4)
def get_action(self) -> dict[str, float]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
start = time.perf_counter()
action = self.arm.read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read action: {dt_ms:.1f}ms")
return action
def send_feedback(self, feedback: dict[str, float]) -> None:
raise NotImplementedError
def disconnect(self) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.arm.disconnect()
logger.info(f"{self} disconnected.")

View File

@ -33,8 +33,8 @@ from lerobot.common.datasets.image_writer import safe_stop_image_writer
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import get_features_from_robot
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robot_devices.utils import busy_wait
from lerobot.common.robots.utils import Robot
from lerobot.common.utils.robot_utils import busy_wait
from lerobot.common.utils.utils import get_safe_torch_device, has_method

View File

@ -0,0 +1,52 @@
def encode_sign_magnitude(value: int, sign_bit_index: int):
"""
https://en.wikipedia.org/wiki/Signed_number_representations#Sign%E2%80%93magnitude
"""
max_magnitude = (1 << sign_bit_index) - 1
magnitude = abs(value)
if magnitude > max_magnitude:
raise ValueError(f"Magnitude {magnitude} exceeds {max_magnitude} (max for {sign_bit_index=})")
direction_bit = 1 if value < 0 else 0
return (direction_bit << sign_bit_index) | magnitude
def decode_sign_magnitude(encoded_value: int, sign_bit_index: int):
"""
https://en.wikipedia.org/wiki/Signed_number_representations#Sign%E2%80%93magnitude
"""
direction_bit = (encoded_value >> sign_bit_index) & 1
magnitude_mask = (1 << sign_bit_index) - 1
magnitude = encoded_value & magnitude_mask
return -magnitude if direction_bit else magnitude
def encode_twos_complement(value: int, n_bytes: int):
"""
https://en.wikipedia.org/wiki/Signed_number_representations#Two%27s_complement
"""
bit_width = n_bytes * 8
min_val = -(1 << (bit_width - 1))
max_val = (1 << (bit_width - 1)) - 1
if not (min_val <= value <= max_val):
raise ValueError(
f"Value {value} out of range for {n_bytes}-byte two's complement: [{min_val}, {max_val}]"
)
if value >= 0:
return value
return (1 << bit_width) + value
def decode_twos_complement(value: int, n_bytes: int) -> int:
"""
https://en.wikipedia.org/wiki/Signed_number_representations#Two%27s_complement
"""
bits = n_bytes * 8
sign_bit = 1 << (bits - 1)
if value & sign_bit:
value -= 1 << bits
return value

View File

@ -42,24 +42,3 @@ def safe_disconnect(func):
raise e
return wrapper
class RobotDeviceNotConnectedError(Exception):
"""Exception raised when the robot device is not connected."""
def __init__(
self, message="This robot device is not connected. Try calling `robot_device.connect()` first."
):
self.message = message
super().__init__(self.message)
class RobotDeviceAlreadyConnectedError(Exception):
"""Exception raised when the robot device is already connected."""
def __init__(
self,
message="This robot device is already connected. Try not calling `robot_device.connect()` twice.",
):
self.message = message
super().__init__(self.message)

View File

@ -17,7 +17,9 @@ import logging
import os
import os.path as osp
import platform
import select
import subprocess
import sys
from copy import copy
from datetime import datetime, timezone
from pathlib import Path
@ -228,3 +230,12 @@ def is_valid_numpy_dtype_string(dtype_str: str) -> bool:
except TypeError:
# If a TypeError is raised, the string is not a valid dtype
return False
def enter_pressed() -> bool:
return select.select([sys.stdin], [], [], 0)[0] and sys.stdin.readline().strip() == ""
def move_cursor_up(lines):
"""Move the cursor up by a specified number of lines."""
print(f"\033[{lines}A", end="")

View File

@ -17,7 +17,7 @@ from pathlib import Path
import draccus
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.common.robots import RobotConfig
from lerobot.configs import parser
from lerobot.configs.policies import PreTrainedConfig

View File

@ -21,78 +21,38 @@ python lerobot/scripts/configure_motor.py \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
--id 1
```
"""
import argparse
import time
from lerobot.common.motors.dynamixel.dynamixel import MODEL_RESOLUTION as DXL_MODEL_RESOLUTION
from lerobot.common.motors.feetech.feetech import MODEL_RESOLUTION as FTCH_MODEL_RESOLUTION
def get_motor_bus_cls(brand: str) -> tuple:
def configure_motor(port, brand, model, target_motor_idx, target_baudrate):
if brand == "feetech":
from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig
from lerobot.common.robot_devices.motors.feetech import (
MODEL_BAUDRATE_TABLE,
SCS_SERIES_BAUDRATE_TABLE,
FeetechMotorsBus,
)
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus
return FeetechMotorsBusConfig, FeetechMotorsBus, MODEL_BAUDRATE_TABLE, SCS_SERIES_BAUDRATE_TABLE
motor_bus = FeetechMotorsBus(port=port, motors={"motor": (target_motor_idx, model)})
elif brand == "dynamixel":
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
from lerobot.common.robot_devices.motors.dynamixel import (
MODEL_BAUDRATE_TABLE,
X_SERIES_BAUDRATE_TABLE,
DynamixelMotorsBus,
)
from lerobot.common.motors.dynamixel.dynamixel import DynamixelMotorsBus
return DynamixelMotorsBusConfig, DynamixelMotorsBus, MODEL_BAUDRATE_TABLE, X_SERIES_BAUDRATE_TABLE
motor_bus = DynamixelMotorsBus(port=port, motors={"motor": (target_motor_idx, model)})
else:
raise ValueError(
f"Currently we do not support this motor brand: {brand}. We currently support feetech and dynamixel motors."
)
def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
motor_bus_config_cls, motor_bus_cls, model_baudrate_table, series_baudrate_table = get_motor_bus_cls(
brand
)
# Check if the provided model exists in the model_baud_rate_table
if model not in model_baudrate_table:
raise ValueError(
f"Invalid model '{model}' for brand '{brand}'. Supported models: {list(model_baudrate_table.keys())}"
)
# Setup motor names, indices, and models
motor_name = "motor"
motor_index_arbitrary = motor_idx_des # Use the motor ID passed via argument
motor_model = model # Use the motor model passed via argument
config = motor_bus_config_cls(port=port, motors={motor_name: (motor_index_arbitrary, motor_model)})
# Initialize the MotorBus with the correct port and motor configurations
motor_bus = motor_bus_cls(config=config)
# Try to connect to the motor bus and handle any connection-specific errors
try:
motor_bus.connect()
print(f"Connected on port {motor_bus.port}")
except OSError as e:
print(f"Error occurred when connecting to the motor bus: {e}")
return
motor_bus.connect()
# Motor bus is connected, proceed with the rest of the operations
try:
print("Scanning all baudrates and motor indices")
all_baudrates = set(series_baudrate_table.values())
model_baudrates = list(motor_bus.model_baudrate_table[model].values())
motor_index = -1 # Set the motor index to an out-of-range value.
for baudrate in all_baudrates:
motor_bus.set_bus_baudrate(baudrate)
for baudrate in model_baudrates:
motor_bus.set_baudrate(baudrate)
present_ids = motor_bus.find_motor_indices(list(range(1, 10)))
if len(present_ids) > 1:
raise ValueError(
@ -116,14 +76,14 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
# Allows ID and BAUDRATE to be written in memory
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Lock", 0)
if baudrate != baudrate_des:
print(f"Setting its baudrate to {baudrate_des}")
baudrate_idx = list(series_baudrate_table.values()).index(baudrate_des)
if baudrate != target_baudrate:
print(f"Setting its baudrate to {target_baudrate}")
baudrate_idx = model_baudrates.index(target_baudrate)
# The write can fail, so we allow retries
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Baud_Rate", baudrate_idx)
time.sleep(0.5)
motor_bus.set_bus_baudrate(baudrate_des)
motor_bus.set_bus_baudrate(target_baudrate)
present_baudrate_idx = motor_bus.read_with_motor_ids(
motor_bus.motor_models, motor_index, "Baud_Rate", num_retry=2
)
@ -131,13 +91,15 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
if present_baudrate_idx != baudrate_idx:
raise OSError("Failed to write baudrate.")
print(f"Setting its index to desired index {motor_idx_des}")
print(f"Setting its index to desired index {target_motor_idx}")
if brand == "feetech":
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "Lock", 0)
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "ID", motor_idx_des)
motor_bus.write_with_motor_ids(motor_bus.motor_models, motor_index, "ID", target_motor_idx)
present_idx = motor_bus.read_with_motor_ids(motor_bus.motor_models, motor_idx_des, "ID", num_retry=2)
if present_idx != motor_idx_des:
present_idx = motor_bus.read_with_motor_ids(
motor_bus.motor_models, target_motor_idx, "ID", num_retry=2
)
if present_idx != target_motor_idx:
raise OSError("Failed to write index.")
if brand == "feetech":
@ -145,32 +107,34 @@ def configure_motor(port, brand, model, motor_idx_des, baudrate_des):
# the motors. Note: this configuration is not in the official STS3215 Memory Table
motor_bus.write("Lock", 0)
motor_bus.write("Maximum_Acceleration", 254)
motor_bus.write("Goal_Position", 2048)
time.sleep(4)
print("Present Position", motor_bus.read("Present_Position"))
motor_bus.write("Max_Angle_Limit", 4095) # default 4095
motor_bus.write("Min_Angle_Limit", 0) # default 0
motor_bus.write("Offset", 0)
time.sleep(4)
motor_bus.write("Mode", 0)
motor_bus.write("Goal_Position", 2048)
motor_bus.write("Lock", 1)
print("Offset", motor_bus.read("Offset"))
except Exception as e:
print(f"Error occurred during motor configuration: {e}")
finally:
motor_bus.disconnect()
if motor_bus.is_connected:
motor_bus.disconnect()
print("Disconnected from motor bus.")
if __name__ == "__main__":
model_choices = [*FTCH_MODEL_RESOLUTION.keys(), *DXL_MODEL_RESOLUTION.keys()]
brand_choices = ["feetech", "dynamixel"]
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=str, required=True, help="Motors bus port (e.g. dynamixel,feetech)")
parser.add_argument("--brand", type=str, required=True, help="Motor brand (e.g. dynamixel,feetech)")
parser.add_argument("--model", type=str, required=True, help="Motor model (e.g. xl330-m077,sts3215)")
parser.add_argument("--ID", type=int, required=True, help="Desired ID of the current motor (e.g. 1,2,3)")
parser.add_argument("--port", type=str, required=True, help="Motors bus port")
parser.add_argument("--brand", type=str, required=True, choices=brand_choices, help="Motor brand")
parser.add_argument("--model", type=str, required=True, choices=model_choices, help="Motor model")
parser.add_argument("--id", type=int, required=True, help="Desired ID of the current motor (e.g. 1,2,3)")
parser.add_argument(
"--baudrate", type=int, default=1000000, help="Desired baudrate for the motor (default: 1000000)"
"--baudrate", type=int, default=1_000_000, help="Desired baudrate for the motor (default: 1_000_000)"
)
args = parser.parse_args()
configure_motor(args.port, args.brand, args.model, args.ID, args.baudrate)
configure_motor(args.port, args.brand, args.model, args.id, args.baudrate)

View File

@ -142,15 +142,8 @@ from pprint import pformat
# from safetensors.torch import load_file, save_file
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.policies.factory import make_policy
from lerobot.common.robot_devices.control_configs import (
CalibrateControlConfig,
ControlPipelineConfig,
RecordControlConfig,
RemoteRobotConfig,
ReplayControlConfig,
TeleoperateControlConfig,
)
from lerobot.common.robot_devices.control_utils import (
from lerobot.common.robots.utils import Robot, make_robot_from_config
from lerobot.common.utils.control_utils import (
control_loop,
init_keyboard_listener,
log_control_info,
@ -161,10 +154,17 @@ from lerobot.common.robot_devices.control_utils import (
stop_recording,
warmup_record,
)
from lerobot.common.robot_devices.robots.utils import Robot, make_robot_from_config
from lerobot.common.robot_devices.utils import busy_wait, safe_disconnect
from lerobot.common.utils.robot_utils import busy_wait, safe_disconnect
from lerobot.common.utils.utils import has_method, init_logging, log_say
from lerobot.configs import parser
from lerobot.configs.control import (
CalibrateControlConfig,
ControlPipelineConfig,
RecordControlConfig,
RemoteRobotConfig,
ReplayControlConfig,
TeleoperateControlConfig,
)
########################################################################################
# Control modes
@ -379,7 +379,7 @@ def control_robot(cfg: ControlPipelineConfig):
elif isinstance(cfg.control, ReplayControlConfig):
replay(robot, cfg.control)
elif isinstance(cfg.control, RemoteRobotConfig):
from lerobot.common.robot_devices.robots.lekiwi_remote import run_lekiwi
from lerobot.common.robots.lekiwi.lekiwi_remote import run_lekiwi
run_lekiwi(cfg.robot)

View File

@ -93,7 +93,8 @@ import numpy as np
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.robot_devices.control_utils import (
from lerobot.common.robots.utils import Robot, make_robot
from lerobot.common.utils.control_utils import (
init_keyboard_listener,
init_policy,
is_headless,
@ -103,8 +104,7 @@ from lerobot.common.robot_devices.control_utils import (
sanity_check_dataset_robot_compatibility,
stop_recording,
)
from lerobot.common.robot_devices.robots.utils import Robot, make_robot
from lerobot.common.robot_devices.utils import busy_wait
from lerobot.common.utils.robot_utils import busy_wait
from lerobot.common.utils.utils import init_hydra_config, init_logging, log_say
raise NotImplementedError("This script is currently deactivated")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 134 KiB

After

Width:  |  Height:  |  Size: 509 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

After

Width:  |  Height:  |  Size: 528 KiB

View File

@ -53,7 +53,7 @@ dependencies = [
"einops>=0.8.0",
"flask>=3.0.3",
"gdown>=5.1.0",
"gymnasium==0.29.1", # TODO(rcadene, aliberts): Make gym 1.0.0 work
"gymnasium==0.29.1", # TODO(rcadene, aliberts): Make gym 1.0.0 work
"h5py>=3.10.0",
"huggingface-hub[hf-transfer,cli]>=0.27.1 ; python_version < '4.0'",
"imageio[ffmpeg]>=2.34.0",
@ -92,7 +92,7 @@ stretch = [
"pyrealsense2>=2.55.1.6486 ; sys_platform != 'darwin'",
"pynput>=1.7.7",
]
test = ["pytest>=8.1.0", "pytest-cov>=5.0.0", "pyserial>=3.5"]
test = ["pytest>=8.1.0", "pytest-cov>=5.0.0", "pyserial>=3.5", "mock-serial>=0.0.1 ; sys_platform != 'win32'"]
umi = ["imagecodecs>=2024.1.1"]
video_benchmark = ["scikit-image>=0.23.2", "pandas>=2.2.2"]
xarm = ["gym-xarm>=0.1.1 ; python_version < '4.0'"]
@ -108,6 +108,9 @@ exclude = ["tests/artifacts/**/*.safetensors"]
[tool.ruff.lint]
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
[tool.ruff.lint.per-file-ignores]
"__init__.py" = ["F401", "F403"]
[tool.bandit]
exclude_dirs = [
"tests",

View File

@ -37,7 +37,7 @@ pytest -sx 'tests/test_cameras.py::test_camera[intelrealsense-True]'
import numpy as np
import pytest
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from tests.utils import TEST_CAMERA_TYPES, make_camera, require_camera
# Maximum absolute difference between two consecutive images recorded by a camera.
@ -70,11 +70,11 @@ def test_camera(request, camera_type, mock):
camera = make_camera(**camera_kwargs)
# Test reading, async reading, disconnecting before connecting raises an error
with pytest.raises(RobotDeviceNotConnectedError):
with pytest.raises(DeviceNotConnectedError):
camera.read()
with pytest.raises(RobotDeviceNotConnectedError):
with pytest.raises(DeviceNotConnectedError):
camera.async_read()
with pytest.raises(RobotDeviceNotConnectedError):
with pytest.raises(DeviceNotConnectedError):
camera.disconnect()
# Test deleting the object without connecting first
@ -89,7 +89,7 @@ def test_camera(request, camera_type, mock):
assert camera.capture_height is not None
# Test connecting twice raises an error
with pytest.raises(RobotDeviceAlreadyConnectedError):
with pytest.raises(DeviceAlreadyConnectedError):
camera.connect()
# Test reading from the camera
@ -198,9 +198,9 @@ def test_camera(request, camera_type, mock):
def test_save_images_from_cameras(tmp_path, request, camera_type, mock):
# TODO(rcadene): refactor
if camera_type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import save_images_from_cameras
from lerobot.common.cameras.opencv.camera_opencv import save_images_from_cameras
elif camera_type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import save_images_from_cameras
from lerobot.common.cameras.intel.camera_realsense import save_images_from_cameras
# Small `record_time_s` to speedup unit tests
save_images_from_cameras(tmp_path, record_time_s=0.02, mock=mock)

View File

@ -20,7 +20,7 @@ import pytest
from serial import SerialException
from lerobot import available_cameras, available_motors, available_robots
from lerobot.common.robot_devices.robots.utils import make_robot
from lerobot.common.robots.utils import make_robot
from tests.utils import DEVICE, make_camera, make_motors_bus
# Import fixture modules as plugins

View File

@ -41,7 +41,7 @@ from lerobot.common.datasets.utils import (
)
from lerobot.common.envs.factory import make_env_config
from lerobot.common.policies.factory import make_policy_config
from lerobot.common.robot_devices.robots.utils import make_robot
from lerobot.common.robots.utils import make_robot
from lerobot.configs.default import DatasetConfig
from lerobot.configs.train import TrainPipelineConfig
from tests.fixtures.constants import DUMMY_CHW, DUMMY_HWC, DUMMY_REPO_ID

Some files were not shown because too many files have changed in this diff Show More