Aggregate works
This commit is contained in:
parent
e2e6f6e666
commit
c36d2253d0
examples/port_datasets
lerobot/common/datasets
tests
|
@ -36,7 +36,6 @@ python examples/port_datasets/openx_rlds.py \
|
|||
import argparse
|
||||
import logging
|
||||
import re
|
||||
import shutil
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
|
@ -316,9 +315,9 @@ def main():
|
|||
|
||||
args = parser.parse_args()
|
||||
|
||||
droid_dir = Path("/fsx/remi_cadene/.cache/huggingface/lerobot/cadene/droid")
|
||||
if droid_dir.exists():
|
||||
shutil.rmtree(droid_dir)
|
||||
# droid_dir = Path("/fsx/remi_cadene/.cache/huggingface/lerobot/cadene/droid")
|
||||
# if droid_dir.exists():
|
||||
# shutil.rmtree(droid_dir)
|
||||
|
||||
create_lerobot_dataset(**vars(args))
|
||||
|
||||
|
|
|
@ -0,0 +1,52 @@
|
|||
from pathlib import Path
|
||||
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
|
||||
|
||||
def main():
|
||||
repo_id = "cadene/droid"
|
||||
datetime = "2025-02-22_11-23-54"
|
||||
port_log_dir = Path(f"/fsx/remi_cadene/logs/{datetime}_port_openx_droid")
|
||||
|
||||
compl_dir = port_log_dir / "completions"
|
||||
|
||||
paths = list(compl_dir.glob("*"))
|
||||
total_items = len(paths)
|
||||
|
||||
# Use tqdm with the total parameter
|
||||
wrong_completions = []
|
||||
error_messages = []
|
||||
for i, path in tqdm.tqdm(enumerate(paths), total=total_items):
|
||||
try:
|
||||
rank = path.name.lstrip("0")
|
||||
if rank == "":
|
||||
rank = 0
|
||||
meta = LeRobotDatasetMetadata(f"{repo_id}_{datetime}_world_2048_rank_{rank}")
|
||||
last_episode_index = meta.total_episodes - 1
|
||||
last_ep_data_path = meta.root / meta.get_data_file_path(last_episode_index)
|
||||
|
||||
if not last_ep_data_path.exists():
|
||||
raise ValueError(path)
|
||||
|
||||
for vid_key in meta.video_keys:
|
||||
last_ep_vid_path = meta.root / meta.get_video_file_path(last_episode_index, vid_key)
|
||||
if not last_ep_vid_path.exists():
|
||||
raise ValueError(path)
|
||||
|
||||
except Exception as e:
|
||||
error_messages.append(str(e))
|
||||
wrong_completions.append(path)
|
||||
|
||||
for path, error_msg in zip(wrong_completions, error_messages, strict=False):
|
||||
print(path)
|
||||
print(error_msg)
|
||||
print()
|
||||
# path.unlink()
|
||||
|
||||
print(f"Error {len(wrong_completions)} / {total_items}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,10 +1,12 @@
|
|||
import shutil
|
||||
from pathlib import Path
|
||||
import logging
|
||||
import subprocess
|
||||
|
||||
import pandas as pd
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import write_episode, write_episode_stats, write_info, write_task
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
|
||||
def validate_all_metadata(all_metadata: list[LeRobotDatasetMetadata]):
|
||||
|
@ -14,7 +16,7 @@ def validate_all_metadata(all_metadata: list[LeRobotDatasetMetadata]):
|
|||
robot_type = all_metadata[0].robot_type
|
||||
features = all_metadata[0].features
|
||||
|
||||
for meta in all_metadata:
|
||||
for meta in tqdm.tqdm(all_metadata):
|
||||
if fps != meta.fps:
|
||||
raise ValueError(f"Same fps is expected, but got fps={meta.fps} instead of {fps}.")
|
||||
if robot_type != meta.robot_type:
|
||||
|
@ -39,6 +41,7 @@ def get_update_episode_and_task_func(episode_index_to_add, task_index_to_global_
|
|||
|
||||
|
||||
def aggregate_datasets(all_metadata: list[LeRobotDatasetMetadata], repo_id: str, root=None):
|
||||
logging.info("start aggregate_datasets")
|
||||
fps, robot_type, features = validate_all_metadata(all_metadata)
|
||||
|
||||
# Create resulting dataset folder
|
||||
|
@ -50,11 +53,12 @@ def aggregate_datasets(all_metadata: list[LeRobotDatasetMetadata], repo_id: str,
|
|||
root=root,
|
||||
)
|
||||
|
||||
logging.info("find all tasks")
|
||||
# find all tasks, deduplicate them, create new task indices for each dataset
|
||||
# indexed by dataset index
|
||||
datasets_task_index_to_aggr_task_index = {}
|
||||
aggr_task_index = 0
|
||||
for dataset_index, meta in enumerate(all_metadata):
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata)):
|
||||
task_index_to_aggr_task_index = {}
|
||||
|
||||
for task_index, task in meta.tasks.items():
|
||||
|
@ -69,8 +73,9 @@ def aggregate_datasets(all_metadata: list[LeRobotDatasetMetadata], repo_id: str,
|
|||
|
||||
datasets_task_index_to_aggr_task_index[dataset_index] = task_index_to_aggr_task_index
|
||||
|
||||
logging.info("cp data and videos")
|
||||
aggr_episode_index_shift = 0
|
||||
for dataset_index, meta in enumerate(all_metadata):
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata)):
|
||||
# cp data
|
||||
for episode_index in range(meta.total_episodes):
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
|
@ -94,7 +99,10 @@ def aggregate_datasets(all_metadata: list[LeRobotDatasetMetadata], repo_id: str,
|
|||
video_path = meta.root / meta.get_video_file_path(episode_index, vid_key)
|
||||
aggr_video_path = aggr_meta.root / aggr_meta.get_video_file_path(aggr_episode_index, vid_key)
|
||||
aggr_video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(video_path, aggr_video_path)
|
||||
# shutil.copy(video_path, aggr_video_path)
|
||||
|
||||
copy_command = f"cp {video_path} {aggr_video_path} &"
|
||||
subprocess.Popen(copy_command, shell=True)
|
||||
|
||||
# populate episodes
|
||||
for episode_index, episode_dict in meta.episodes.items():
|
||||
|
@ -109,11 +117,13 @@ def aggregate_datasets(all_metadata: list[LeRobotDatasetMetadata], repo_id: str,
|
|||
|
||||
# populate info
|
||||
aggr_meta.info["total_episodes"] += meta.total_episodes
|
||||
aggr_meta.info["total_frames"] += meta.total_episodes
|
||||
aggr_meta.info["total_frames"] += meta.total_frames
|
||||
aggr_meta.info["total_videos"] += len(aggr_meta.video_keys) * meta.total_episodes
|
||||
|
||||
aggr_episode_index_shift += meta.total_episodes
|
||||
|
||||
logging.info("write meta data")
|
||||
|
||||
aggr_meta.info["total_chunks"] = aggr_meta.get_episode_chunk(aggr_episode_index_shift - 1)
|
||||
aggr_meta.info["splits"] = {"train": f"0:{aggr_meta.info['total_episodes']}"}
|
||||
|
||||
|
@ -133,30 +143,30 @@ def aggregate_datasets(all_metadata: list[LeRobotDatasetMetadata], repo_id: str,
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
init_logging()
|
||||
repo_id = "cadene/droid"
|
||||
aggr_repo_id = "cadene/droid"
|
||||
datetime = "2025-02-22_11-23-54"
|
||||
|
||||
root = Path(f"/tmp/{repo_id}")
|
||||
if root.exists():
|
||||
shutil.rmtree(root)
|
||||
# root = Path(f"/tmp/{repo_id}")
|
||||
# if root.exists():
|
||||
# shutil.rmtree(root)
|
||||
root = None
|
||||
|
||||
all_metadata = [
|
||||
LeRobotDatasetMetadata(f"{repo_id}_{datetime}_world_2048_rank_0"),
|
||||
LeRobotDatasetMetadata(f"{repo_id}_{datetime}_world_2048_rank_1"),
|
||||
]
|
||||
# all_metadata = [LeRobotDatasetMetadata(f"{repo_id}_{datetime}_world_2048_rank_{rank}") for rank in range(2048)]
|
||||
|
||||
aggregate_datasets(
|
||||
all_metadata,
|
||||
repo_id,
|
||||
root=root,
|
||||
)
|
||||
# aggregate_datasets(
|
||||
# all_metadata,
|
||||
# aggr_repo_id,
|
||||
# root=root,
|
||||
# )
|
||||
|
||||
aggr_dataset = LeRobotDataset(
|
||||
repo_id=repo_id,
|
||||
repo_id=aggr_repo_id,
|
||||
root=root,
|
||||
)
|
||||
aggr_dataset.push_to_hub()
|
||||
aggr_dataset.push_to_hub(tags=["openx"])
|
||||
|
||||
# for meta in all_metadata:
|
||||
# dataset = LeRobotDataset(repo_id=meta.repo_id, root=meta.root)
|
||||
# dataset.push_to_hub()
|
||||
# dataset.push_to_hub(tags=["openx"])
|
||||
|
|
|
@ -0,0 +1,19 @@
|
|||
from lerobot.common.datasets.aggregate import aggregate_datasets
|
||||
from tests.fixtures.constants import DUMMY_REPO_ID
|
||||
|
||||
|
||||
def test_aggregate_datasets(tmp_path, lerobot_dataset_factory):
|
||||
dataset_0 = lerobot_dataset_factory(
|
||||
root=tmp_path / "test_0",
|
||||
repo_id=DUMMY_REPO_ID + "_0",
|
||||
total_episodes=10,
|
||||
total_frames=400,
|
||||
)
|
||||
dataset_1 = lerobot_dataset_factory(
|
||||
root=tmp_path / "test_1",
|
||||
repo_id=DUMMY_REPO_ID + "_1",
|
||||
total_episodes=10,
|
||||
total_frames=400,
|
||||
)
|
||||
|
||||
dataset_2 = aggregate_datasets([dataset_0, dataset_1])
|
Loading…
Reference in New Issue