draft
This commit is contained in:
parent
18dd8f32cd
commit
c50a13ab31
lerobot
|
@ -103,12 +103,21 @@ class ActionChunkingTransformerConfig:
|
|||
def __post_init__(self):
|
||||
"""Input validation (not exhaustive)."""
|
||||
if not self.vision_backbone.startswith("resnet"):
|
||||
raise ValueError("`vision_backbone` must be one of the ResNet variants.")
|
||||
raise ValueError(
|
||||
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
|
||||
)
|
||||
if self.use_temporal_aggregation:
|
||||
raise NotImplementedError("Temporal aggregation is not yet implemented.")
|
||||
if self.n_action_steps > self.chunk_size:
|
||||
raise ValueError(
|
||||
"The chunk size is the upper bound for the number of action steps per model invocation."
|
||||
f"The chunk size is the upper bound for the number of action steps per model invocation. Got "
|
||||
f"{self.n_action_steps} for `n_action_steps` and {self.chunk_size} for `chunk_size`."
|
||||
)
|
||||
if self.n_obs_steps != 1:
|
||||
raise ValueError(
|
||||
f"Multiple observation steps not handled yet. Got `nobs_steps={self.n_obs_steps}`"
|
||||
)
|
||||
if self.camera_names != ["top"]:
|
||||
raise ValueError("For now, `camera_names` can only be ['top']")
|
||||
raise ValueError(f"For now, `camera_names` can only be ['top']. Got {self.camera_names}.")
|
||||
if len(set(self.camera_names)) != len(self.camera_names):
|
||||
raise ValueError(f"`camera_names` should not have any repeated entries. Got {self.camera_names}.")
|
||||
|
|
|
@ -20,7 +20,9 @@ from torch import Tensor, nn
|
|||
from torchvision.models._utils import IntermediateLayerGetter
|
||||
from torchvision.ops.misc import FrozenBatchNorm2d
|
||||
|
||||
from lerobot.common.policies.act.configuration_act import ActionChunkingTransformerConfig
|
||||
from lerobot.common.policies.act.configuration_act import (
|
||||
ActionChunkingTransformerConfig,
|
||||
)
|
||||
|
||||
|
||||
class ActionChunkingTransformerPolicy(nn.Module):
|
||||
|
@ -61,9 +63,6 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
|||
"""
|
||||
|
||||
name = "act"
|
||||
_multiple_obs_steps_not_handled_msg = (
|
||||
"ActionChunkingTransformerPolicy does not handle multiple observation steps."
|
||||
)
|
||||
|
||||
def __init__(self, cfg: ActionChunkingTransformerConfig | None = None):
|
||||
"""
|
||||
|
@ -74,8 +73,6 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
|||
super().__init__()
|
||||
if cfg is None:
|
||||
cfg = ActionChunkingTransformerConfig()
|
||||
if cfg.n_obs_steps != 1:
|
||||
raise ValueError(self._multiple_obs_steps_not_handled_msg)
|
||||
self.cfg = cfg
|
||||
|
||||
# BERT style VAE encoder with input [cls, *joint_space_configuration, *action_sequence].
|
||||
|
@ -102,7 +99,11 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
|||
mean=cfg.image_normalization_mean, std=cfg.image_normalization_std
|
||||
)
|
||||
backbone_model = getattr(torchvision.models, cfg.vision_backbone)(
|
||||
replace_stride_with_dilation=[False, False, cfg.replace_final_stride_with_dilation],
|
||||
replace_stride_with_dilation=[
|
||||
False,
|
||||
False,
|
||||
cfg.replace_final_stride_with_dilation,
|
||||
],
|
||||
pretrained=cfg.use_pretrained_backbone,
|
||||
norm_layer=FrozenBatchNorm2d,
|
||||
)
|
||||
|
@ -176,82 +177,16 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
|||
environment. It works by managing the actions in a queue and only calling `select_actions` when the
|
||||
queue is empty.
|
||||
"""
|
||||
self.eval()
|
||||
if len(self._action_queue) == 0:
|
||||
# `select_actions` returns a (batch_size, n_action_steps, *) tensor, but the queue effectively has
|
||||
# shape (n_action_steps, batch_size, *), hence the transpose.
|
||||
self._action_queue.extend(self._select_actions(batch).transpose(0, 1))
|
||||
# `_forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue effectively
|
||||
# has shape (n_action_steps, batch_size, *), hence the transpose.
|
||||
self._action_queue.extend(self._forward(batch)[0][: self.cfg.n_action_steps].transpose(0, 1))
|
||||
return self._action_queue.popleft()
|
||||
|
||||
@torch.no_grad
|
||||
def _select_actions(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Use the action chunking transformer to generate a sequence of actions."""
|
||||
self.eval()
|
||||
batch = self._reshape_batch(batch, add_obs_steps_dim=True)
|
||||
actions, _ = self._forward(
|
||||
batch["observation.state"], self.image_normalizer(batch["observation.images.top"])
|
||||
)
|
||||
return actions[: self.cfg.n_action_steps]
|
||||
|
||||
def _reshape_batch(self, batch: dict[str, Tensor], add_obs_steps_dim: bool = False) -> dict[str, Tensor]:
|
||||
"""Reshapes the batch items to account for various requirements of this policy.
|
||||
|
||||
This function expects `batch` to have (at least):
|
||||
{
|
||||
"observation.state": (B, 1, J) OR (B, J) tensor of robot states (joint configuration).
|
||||
"observation.images.top": (B, 1, C, H, W) OR (B, C, H, W) tensor of images.
|
||||
}
|
||||
|
||||
TODO(alexander-soare): Right now this method does and undoes reshaping operations. This is just to
|
||||
separate out the core logic from the temporary logic. See comments below.
|
||||
"""
|
||||
# Create a shallow copy.
|
||||
batch = dict(batch)
|
||||
|
||||
# Add a dimension for observation steps.
|
||||
if add_obs_steps_dim:
|
||||
# Add a dimension for the observations steps. Since n_obs_steps > 1 is not supported right now,
|
||||
# this just amounts to an unsqueeze.
|
||||
for k in batch:
|
||||
if k.startswith("observation."):
|
||||
batch[k] = batch[k].unsqueeze(1)
|
||||
|
||||
# Temporary logic to remove the observation step dimension as the policy does not yet handle it.
|
||||
# TODO(alexander-soare): generalize this to multiple observations steps.
|
||||
# Check that there is only 1 observation step (policy does not yet handle more).
|
||||
if not all(batch[k].shape[1] == 1 for k in batch if k.startswith("observation.")):
|
||||
raise ValueError(self._multiple_obs_steps_not_handled_msg)
|
||||
# Remove observation steps dimension.
|
||||
for k in batch:
|
||||
if k.startswith("observation."):
|
||||
batch[k] = batch[k].squeeze(1)
|
||||
|
||||
# Temporary logic to add the multiple image dimension back in.
|
||||
# TODO(alexander-soare): generalize this to multiple images. Once resolved, this logic will stack all
|
||||
# images.
|
||||
assert (
|
||||
sum(k.startswith("observation.images.") and not k.endswith("is_pad") for k in batch) == 1
|
||||
), f"{self.__class__.__name__} only handles one image for now."
|
||||
# Since we only handle one image, just unsqueeze instead of stacking.
|
||||
batch["observation.images.top"] = batch["observation.images.top"].unsqueeze(1)
|
||||
|
||||
return batch
|
||||
|
||||
def compute_loss(self, batch, **_) -> float:
|
||||
batch = self._reshape_batch(batch)
|
||||
|
||||
self.train()
|
||||
|
||||
num_slices = self.cfg.batch_size
|
||||
batch_size = self.cfg.chunk_size * num_slices
|
||||
|
||||
assert batch_size % self.cfg.chunk_size == 0
|
||||
assert batch_size % num_slices == 0
|
||||
|
||||
actions_hat, (mu_hat, log_sigma_x2_hat) = self._forward(
|
||||
batch["observation.state"],
|
||||
self.image_normalizer(batch["observation.images.top"]),
|
||||
batch["action"],
|
||||
)
|
||||
"""Runs the batch through the model and computes the loss for training or validation."""
|
||||
actions_hat, (mu_hat, log_sigma_x2_hat) = self._forward(batch)
|
||||
|
||||
l1_loss = (
|
||||
F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
|
||||
|
@ -274,6 +209,7 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
|||
def update(self, batch, **_) -> dict:
|
||||
"""Run the model in train mode, compute the loss, and do an optimization step."""
|
||||
start_time = time.time()
|
||||
self.train()
|
||||
loss = self.compute_loss(batch)
|
||||
loss.backward()
|
||||
|
||||
|
@ -295,35 +231,64 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
|||
|
||||
return info
|
||||
|
||||
def _forward(
|
||||
self, robot_state: Tensor, image: Tensor, actions: Tensor | None = None
|
||||
) -> tuple[Tensor, tuple[Tensor | None, Tensor | None]]:
|
||||
def _stack_images(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
"""Stacks all the images in a batch and puts them in a new key: "observation.images".
|
||||
|
||||
This function expects `batch` to have (at least):
|
||||
{
|
||||
"observation.state": (B, state_dim) batch of robot states.
|
||||
"observation.images.{name}": (B, C, H, W) tensor of images.
|
||||
}
|
||||
"""
|
||||
Args:
|
||||
robot_state: (B, J) batch of robot joint configurations.
|
||||
image: (B, N, C, H, W) batch of N camera frames.
|
||||
actions: (B, S, A) batch of actions from the target dataset which must be provided if the
|
||||
VAE is enabled and the model is in training mode.
|
||||
# Check that there is only one image.
|
||||
# TODO(alexander-soare): generalize this to multiple images.
|
||||
provided_cameras = {k.rsplit(".", 1)[-1] for k in batch if k.startswith("observation.images.")}
|
||||
if len(missing := set(self.cfg.camera_names).difference(provided_cameras)) > 0:
|
||||
raise ValueError(
|
||||
f"The following camera images are missing from the provided batch: {missing}. Check the "
|
||||
"configuration parameter: `camera_names`."
|
||||
)
|
||||
# Stack images in the order dictated by the camera names.
|
||||
batch["observation.images"] = torch.stack(
|
||||
[batch[f"observation.images.{name}"] for name in self.cfg.camera_names],
|
||||
dim=-4,
|
||||
)
|
||||
|
||||
def _forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, tuple[Tensor, Tensor] | tuple[None, None]]:
|
||||
"""A forward pass through the Action Chunking Transformer (with optional VAE encoder).
|
||||
|
||||
`batch` should have the following structure:
|
||||
|
||||
{
|
||||
"observation.state": (B, state_dim) batch of robot states.
|
||||
"observation.images": (B, n_cameras, C, H, W) batch of images.
|
||||
"action" (optional, only if training with VAE): (B, chunk_size, action dim) batch of actions.
|
||||
}
|
||||
|
||||
Returns:
|
||||
(B, S, A) batch of action sequences
|
||||
(B, chunk_size, action_dim) batch of action sequences
|
||||
Tuple containing the latent PDF's parameters (mean, log(σ²)) both as (B, L) tensors where L is the
|
||||
latent dimension.
|
||||
"""
|
||||
if self.cfg.use_vae and self.training:
|
||||
assert (
|
||||
actions is not None
|
||||
"action" in batch
|
||||
), "actions must be provided when using the variational objective in training mode."
|
||||
|
||||
batch_size = robot_state.shape[0]
|
||||
self._stack_images(batch)
|
||||
|
||||
batch_size = batch["observation.state"].shape[0]
|
||||
|
||||
# Prepare the latent for input to the transformer encoder.
|
||||
if self.cfg.use_vae and actions is not None:
|
||||
if self.cfg.use_vae and "action" in batch:
|
||||
# Prepare the input to the VAE encoder: [cls, *joint_space_configuration, *action_sequence].
|
||||
cls_embed = einops.repeat(
|
||||
self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
|
||||
) # (B, 1, D)
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(robot_state).unsqueeze(1) # (B, 1, D)
|
||||
action_embed = self.vae_encoder_action_input_proj(actions) # (B, S, D)
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"]).unsqueeze(
|
||||
1
|
||||
) # (B, 1, D)
|
||||
action_embed = self.vae_encoder_action_input_proj(batch["action"]) # (B, S, D)
|
||||
vae_encoder_input = torch.cat([cls_embed, robot_state_embed, action_embed], axis=1) # (B, S+2, D)
|
||||
|
||||
# Prepare fixed positional embedding.
|
||||
|
@ -345,15 +310,16 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
|||
# When not using the VAE encoder, we set the latent to be all zeros.
|
||||
mu = log_sigma_x2 = None
|
||||
latent_sample = torch.zeros([batch_size, self.latent_dim], dtype=torch.float32).to(
|
||||
robot_state.device
|
||||
batch["observation.state"].device
|
||||
)
|
||||
|
||||
# Prepare all other transformer encoder inputs.
|
||||
# Camera observation features and positional embeddings.
|
||||
all_cam_features = []
|
||||
all_cam_pos_embeds = []
|
||||
for cam_id, _ in enumerate(self.cfg.camera_names):
|
||||
cam_features = self.backbone(image[:, cam_id])["feature_map"]
|
||||
images = self.image_normalizer(batch["observation.images"])
|
||||
for cam_index in range(len(self.cfg.camera_names)):
|
||||
cam_features = self.backbone(images[:, cam_index])["feature_map"]
|
||||
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
|
||||
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
|
||||
all_cam_features.append(cam_features)
|
||||
|
@ -363,7 +329,7 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
|||
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=3)
|
||||
|
||||
# Get positional embeddings for robot state and latent.
|
||||
robot_state_embed = self.encoder_robot_state_input_proj(robot_state)
|
||||
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"])
|
||||
latent_embed = self.encoder_latent_input_proj(latent_sample)
|
||||
|
||||
# Stack encoder input and positional embeddings moving to (S, B, C).
|
||||
|
@ -479,7 +445,10 @@ class _TransformerDecoder(nn.Module):
|
|||
) -> Tensor:
|
||||
for layer in self.layers:
|
||||
x = layer(
|
||||
x, encoder_out, decoder_pos_embed=decoder_pos_embed, encoder_pos_embed=encoder_pos_embed
|
||||
x,
|
||||
encoder_out,
|
||||
decoder_pos_embed=decoder_pos_embed,
|
||||
encoder_pos_embed=encoder_pos_embed,
|
||||
)
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
|
|
|
@ -67,6 +67,4 @@ policy:
|
|||
utd: 1
|
||||
|
||||
delta_timestamps:
|
||||
observation.images.top: "[i / ${fps} for i in range(1 - ${n_obs_steps}, 1)]"
|
||||
observation.state: "[i / ${fps} for i in range(1 - ${n_obs_steps}, 1)]"
|
||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||
|
|
Loading…
Reference in New Issue