Merge branch 'main' into local_logging_tensorboard

This commit is contained in:
j 2024-05-13 10:55:45 -04:00
commit ccf2782d8a
30 changed files with 430 additions and 278 deletions

View File

@ -57,6 +57,38 @@ jobs:
&& rm -rf tests/outputs outputs
pytest-minimal:
name: Pytest (minimal install)
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
- name: Install poetry
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: "3.10"
- name: Install poetry dependencies
run: |
poetry install --extras "test"
- name: Test with pytest
run: |
pytest tests -v --cov=./lerobot --durations=0 \
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
end-to-end:
name: End-to-end
runs-on: ubuntu-latest

View File

@ -22,9 +22,8 @@ test-end-to-end:
${MAKE} test-act-ete-eval
${MAKE} test-diffusion-ete-train
${MAKE} test-diffusion-ete-eval
# TODO(rcadene, alexander-soare): enable end-to-end tests for tdmpc
# ${MAKE} test-tdmpc-ete-train
# ${MAKE} test-tdmpc-ete-eval
${MAKE} test-tdmpc-ete-train
${MAKE} test-tdmpc-ete-eval
${MAKE} test-default-ete-eval
test-act-ete-train:
@ -80,7 +79,7 @@ test-tdmpc-ete-train:
policy=tdmpc \
env=xarm \
env.task=XarmLift-v0 \
dataset_repo_id=lerobot/xarm_lift_medium_replay \
dataset_repo_id=lerobot/xarm_lift_medium \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=2 \

View File

@ -57,7 +57,6 @@
- Thanks to Tony Zaho, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
- Thanks to Vincent Moens and colleagues for open sourcing [TorchRL](https://github.com/pytorch/rl). It allowed for quick experimentations on the design of `LeRobot`.
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.

View File

@ -7,6 +7,11 @@ ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
git git-lfs openssh-client \
nano vim \
htop atop nvtop \
sed gawk grep curl wget \
tcpdump sysstat screen \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
@ -18,7 +23,8 @@ ENV PATH="/opt/venv/bin:$PATH"
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Install LeRobot
COPY . /lerobot
RUN git lfs install
RUN git clone https://github.com/huggingface/lerobot.git
WORKDIR /lerobot
RUN pip install --upgrade --no-cache-dir pip
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]"

View File

@ -88,9 +88,9 @@ class Logger:
# Also save the full Hydra config for the env configuration.
OmegaConf.save(self._cfg, save_dir / "config.yaml")
if self._wandb and not self._disable_wandb_artifact:
# note wandb artifact does not accept ":" in its name
# note wandb artifact does not accept ":" or "/" in its name
artifact = self._wandb.Artifact(
self._group.replace(":", "_") + "-" + str(self._seed) + "-" + str(identifier),
f"{self._group.replace(':', '_').replace('/', '_')}-{self._seed}-{identifier}",
type="model",
)
artifact.add_file(save_dir / SAFETENSORS_SINGLE_FILE)
@ -100,9 +100,10 @@ class Logger:
self._buffer_dir.mkdir(parents=True, exist_ok=True)
fp = self._buffer_dir / f"{str(identifier)}.pkl"
buffer.save(fp)
if self._wandb:
if self._wandb and not self._disable_wandb_artifact:
# note wandb artifact does not accept ":" or "/" in its name
artifact = self._wandb.Artifact(
self._group + "-" + str(self._seed) + "-" + str(identifier),
f"{self._group.replace(':', '_').replace('/', '_')}-{self._seed}-{identifier}",
type="buffer",
)
artifact.add_file(fp)
@ -120,6 +121,11 @@ class Logger:
assert mode in {"train", "eval"}
if self._wandb is not None:
for k, v in d.items():
if not isinstance(v, (int, float, str)):
logging.warning(
f'WandB logging of key "{k}" was ignored as its type is not handled by this wrapper.'
)
continue
self._wandb.log({f"{mode}/{k}": v}, step=step)
elif self._local_writer is not None:
for k, v in d.items():

View File

@ -101,7 +101,7 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
).mean()
loss_dict = {"l1_loss": l1_loss}
loss_dict = {"l1_loss": l1_loss.item()}
if self.config.use_vae:
# Calculate Dₖₗ(latent_pdf || standard_normal). Note: After computing the KL-divergence for
# each dimension independently, we sum over the latent dimension to get the total
@ -110,7 +110,7 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
mean_kld = (
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
)
loss_dict["kld_loss"] = mean_kld
loss_dict["kld_loss"] = mean_kld.item()
loss_dict["loss"] = l1_loss + mean_kld * self.config.kl_weight
else:
loss_dict["loss"] = l1_loss

View File

@ -51,6 +51,7 @@ class DiffusionConfig:
use_film_scale_modulation: FiLM (https://arxiv.org/abs/1709.07871) is used for the Unet conditioning.
Bias modulation is used be default, while this parameter indicates whether to also use scale
modulation.
noise_scheduler_type: Name of the noise scheduler to use. Supported options: ["DDPM", "DDIM"].
num_train_timesteps: Number of diffusion steps for the forward diffusion schedule.
beta_schedule: Name of the diffusion beta schedule as per DDPMScheduler from Hugging Face diffusers.
beta_start: Beta value for the first forward-diffusion step.
@ -110,6 +111,7 @@ class DiffusionConfig:
diffusion_step_embed_dim: int = 128
use_film_scale_modulation: bool = True
# Noise scheduler.
noise_scheduler_type: str = "DDPM"
num_train_timesteps: int = 100
beta_schedule: str = "squaredcos_cap_v2"
beta_start: float = 0.0001
@ -144,3 +146,9 @@ class DiffusionConfig:
raise ValueError(
f"`prediction_type` must be one of {supported_prediction_types}. Got {self.prediction_type}."
)
supported_noise_schedulers = ["DDPM", "DDIM"]
if self.noise_scheduler_type not in supported_noise_schedulers:
raise ValueError(
f"`noise_scheduler_type` must be one of {supported_noise_schedulers}. "
f"Got {self.noise_scheduler_type}."
)

View File

@ -13,6 +13,7 @@ import einops
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from huggingface_hub import PyTorchModelHubMixin
from robomimic.models.base_nets import SpatialSoftmax
@ -126,6 +127,19 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
return {"loss": loss}
def _make_noise_scheduler(name: str, **kwargs: dict) -> DDPMScheduler | DDIMScheduler:
"""
Factory for noise scheduler instances of the requested type. All kwargs are passed
to the scheduler.
"""
if name == "DDPM":
return DDPMScheduler(**kwargs)
elif name == "DDIM":
return DDIMScheduler(**kwargs)
else:
raise ValueError(f"Unsupported noise scheduler type {name}")
class DiffusionModel(nn.Module):
def __init__(self, config: DiffusionConfig):
super().__init__()
@ -138,12 +152,12 @@ class DiffusionModel(nn.Module):
* config.n_obs_steps,
)
self.noise_scheduler = DDPMScheduler(
self.noise_scheduler = _make_noise_scheduler(
config.noise_scheduler_type,
num_train_timesteps=config.num_train_timesteps,
beta_start=config.beta_start,
beta_end=config.beta_end,
beta_schedule=config.beta_schedule,
variance_type="fixed_small",
clip_sample=config.clip_sample,
clip_sample_range=config.clip_sample_range,
prediction_type=config.prediction_type,
@ -315,11 +329,13 @@ class DiffusionRgbEncoder(nn.Module):
# Set up pooling and final layers.
# Use a dry run to get the feature map shape.
# The dummy input should take the number of image channels from `config.input_shapes` and it should use the
# height and width from `config.crop_shape`.
dummy_input = torch.zeros(size=(1, config.input_shapes["observation.image"][0], *config.crop_shape))
with torch.inference_mode():
feat_map_shape = tuple(
self.backbone(torch.zeros(size=(1, *config.input_shapes["observation.image"]))).shape[1:]
)
self.pool = SpatialSoftmax(feat_map_shape, num_kp=config.spatial_softmax_num_keypoints)
dummy_feature_map = self.backbone(dummy_input)
feature_map_shape = tuple(dummy_feature_map.shape[1:])
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
self.feature_dim = config.spatial_softmax_num_keypoints * 2
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
self.relu = nn.ReLU()

View File

@ -38,7 +38,8 @@ class Policy(Protocol):
def forward(self, batch: dict[str, Tensor]) -> dict:
"""Run the batch through the model and compute the loss for training or validation.
Returns a dictionary with "loss" and maybe other information.
Returns a dictionary with "loss" and potentially other information. Apart from "loss" which is a Tensor, all
other items should be logging-friendly, native Python types.
"""
def select_action(self, batch: dict[str, Tensor]):

View File

@ -47,7 +47,7 @@ class TDMPCConfig:
elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the
elites, when updating the gaussian parameters for CEM.
gaussian_mean_momentum: Momentum (α) used for EMA updates of the mean parameter μ of the gaussian
paramters optimized in CEM. Updates are calculated as μ αμ + (1-α)μ.
parameters optimized in CEM. Updates are calculated as μ αμ + (1-α)μ.
max_random_shift_ratio: Maximum random shift (as a proportion of the image size) to apply to the
image(s) (in units of pixels) for training-time augmentation. If set to 0, no such augmentation
is applied. Note that the input images are assumed to be square for this augmentation.

View File

@ -1,8 +1,10 @@
import logging
import os.path as osp
import random
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
from typing import Generator
import hydra
import numpy as np
@ -39,6 +41,31 @@ def set_global_seed(seed):
torch.cuda.manual_seed_all(seed)
@contextmanager
def seeded_context(seed: int) -> Generator[None, None, None]:
"""Set the seed when entering a context, and restore the prior random state at exit.
Example usage:
```
a = random.random() # produces some random number
with seeded_context(1337):
b = random.random() # produces some other random number
c = random.random() # produces yet another random number, but the same it would have if we never made `b`
```
"""
random_state = random.getstate()
np_random_state = np.random.get_state()
torch_random_state = torch.random.get_rng_state()
torch_cuda_random_state = torch.cuda.random.get_rng_state()
set_global_seed(seed)
yield None
random.setstate(random_state)
np.random.set_state(np_random_state)
torch.random.set_rng_state(torch_random_state)
torch.cuda.random.set_rng_state(torch_cuda_random_state)
def init_logging():
def custom_format(record):
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

View File

@ -3,6 +3,12 @@
seed: 1000
dataset_repo_id: lerobot/aloha_sim_insertion_human
override_dataset_stats:
observation.images.top:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 80000
online_steps: 0
@ -18,12 +24,6 @@ training:
grad_clip_norm: 10
online_steps_between_rollouts: 1
override_dataset_stats:
observation.images.top:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"

View File

@ -7,6 +7,20 @@
seed: 100000
dataset_repo_id: lerobot/pusht
override_dataset_stats:
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
observation.image:
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
# from the original codebase, but we should remove these and train our own pretrained model
observation.state:
min: [13.456424, 32.938293]
max: [496.14618, 510.9579]
action:
min: [12.0, 25.0]
max: [511.0, 511.0]
training:
offline_steps: 200000
online_steps: 0
@ -34,20 +48,6 @@ eval:
n_episodes: 50
batch_size: 50
override_dataset_stats:
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
observation.image:
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
# from the original codebase, but we should remove these and train our own pretrained model
observation.state:
min: [13.456424, 32.938293]
max: [496.14618, 510.9579]
action:
min: [12.0, 25.0]
max: [511.0, 511.0]
policy:
name: diffusion
@ -85,6 +85,7 @@ policy:
diffusion_step_embed_dim: 128
use_film_scale_modulation: True
# Noise scheduler.
noise_scheduler_type: DDPM
num_train_timesteps: 100
beta_schedule: squaredcos_cap_v2
beta_start: 0.0001

View File

@ -1,7 +1,7 @@
# @package _global_
seed: 1
dataset_repo_id: lerobot/xarm_lift_medium_replay
dataset_repo_id: lerobot/xarm_lift_medium
training:
offline_steps: 25000

View File

@ -72,6 +72,7 @@ def make_optimizer_and_scheduler(cfg, policy):
def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
"""Returns a dictionary of items for logging."""
start_time = time.time()
policy.train()
output_dict = policy.forward(batch)
@ -99,6 +100,7 @@ def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
"grad_norm": float(grad_norm),
"lr": optimizer.param_groups[0]["lr"],
"update_s": time.time() - start_time,
**{k: v for k, v in output_dict.items() if k != "loss"},
}
return info
@ -122,7 +124,7 @@ def train_notebook(out_dir=None, job_name=None, config_name="default", config_pa
train(cfg, out_dir=out_dir, job_name=job_name)
def log_train_info(logger, info, step, cfg, dataset, is_offline):
def log_train_info(logger: Logger, info, step, cfg, dataset, is_offline):
loss = info["loss"]
grad_norm = info["grad_norm"]
lr = info["lr"]

View File

@ -47,6 +47,7 @@ local$ rerun ws://localhost:9087
"""
import argparse
import gc
import logging
import time
from pathlib import Path
@ -115,15 +116,17 @@ def visualize_dataset(
spawn_local_viewer = mode == "local" and not save
rr.init(f"{repo_id}/episode_{episode_index}", spawn=spawn_local_viewer)
# Manually call python garbage collector after `rr.init` to avoid hanging in a blocking flush
# when iterating on a dataloader with `num_workers` > 0
# TODO(rcadene): remove `gc.collect` when rerun version 0.16 is out, which includes a fix
gc.collect()
if mode == "distant":
rr.serve(open_browser=False, web_port=web_port, ws_port=ws_port)
logging.info("Logging to Rerun")
if num_workers > 0:
# TODO(rcadene): fix data workers hanging when `rr.init` is called
logging.warning("If data loader is hanging, try `--num-workers 0`.")
for batch in tqdm.tqdm(dataloader, total=len(dataloader)):
# iterate over the batch
for i in range(len(batch["index"])):
@ -196,7 +199,7 @@ def main():
parser.add_argument(
"--num-workers",
type=int,
default=0,
default=4,
help="Number of processes of Dataloader for loading the data.",
)
parser.add_argument(

396
poetry.lock generated
View File

@ -131,17 +131,6 @@ files = [
{file = "antlr4-python3-runtime-4.9.3.tar.gz", hash = "sha256:f224469b4168294902bb1efa80a8bf7855f24c99aef99cbefc1bcd3cce77881b"},
]
[[package]]
name = "appdirs"
version = "1.4.4"
description = "A small Python module for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
optional = false
python-versions = "*"
files = [
{file = "appdirs-1.4.4-py2.py3-none-any.whl", hash = "sha256:a841dacd6b99318a741b166adb07e19ee71a274450e68237b4650ca1055ab128"},
{file = "appdirs-1.4.4.tar.gz", hash = "sha256:7d5d0167b2b1ba821647616af46a749d1c653740dd0d2415100fe26e27afdf41"},
]
[[package]]
name = "asciitree"
version = "0.3.3"
@ -1108,67 +1097,67 @@ protobuf = ["grpcio-tools (>=1.63.0)"]
[[package]]
name = "gym-aloha"
version = "0.1.0"
version = "0.1.1"
description = "A gym environment for ALOHA"
optional = true
python-versions = "<4.0,>=3.10"
files = [
{file = "gym_aloha-0.1.0-py3-none-any.whl", hash = "sha256:62e36eeb09284422cbb7baca0292c6f65e38ec8774bf9b0bf7159ad5990cf29a"},
{file = "gym_aloha-0.1.0.tar.gz", hash = "sha256:bab332f469ba5ffe655fc3e9647aead05d2cb3b950dfb1f299b9539b3857ad7e"},
{file = "gym_aloha-0.1.1-py3-none-any.whl", hash = "sha256:2698037246dbb106828f0bc229b61007b0a21d5967c72cc373f7bc1083203584"},
{file = "gym_aloha-0.1.1.tar.gz", hash = "sha256:614ae1cf116323e7b5ae2f0e9bd282c4f052aee15e839e5587ddce45995359bc"},
]
[package.dependencies]
dm-control = "1.0.14"
gymnasium = ">=0.29.1,<0.30.0"
imageio = {version = ">=2.34.0,<3.0.0", extras = ["ffmpeg"]}
dm-control = ">=1.0.14"
gymnasium = ">=0.29.1"
imageio = {version = ">=2.34.0", extras = ["ffmpeg"]}
mujoco = ">=2.3.7,<3.0.0"
[package.extras]
dev = ["debugpy (>=1.8.1,<2.0.0)", "pre-commit (>=3.7.0,<4.0.0)"]
test = ["pytest (>=8.1.0,<9.0.0)", "pytest-cov (>=5.0.0,<6.0.0)"]
dev = ["debugpy (>=1.8.1)", "pre-commit (>=3.7.0)"]
test = ["pytest (>=8.1.0)", "pytest-cov (>=5.0.0)"]
[[package]]
name = "gym-pusht"
version = "0.1.1"
version = "0.1.3"
description = "A gymnasium environment for PushT."
optional = true
python-versions = "<4.0,>=3.10"
files = [
{file = "gym_pusht-0.1.1-py3-none-any.whl", hash = "sha256:dcf8644713db48286e907aabb11e005b0592632e323baa40d1a4f2dfbbc76c3d"},
{file = "gym_pusht-0.1.1.tar.gz", hash = "sha256:0d1c9ffd4ad0e2411efcc724003a365a853f20b6d596980c113e7ec181ac021f"},
{file = "gym_pusht-0.1.3-py3-none-any.whl", hash = "sha256:feeb02493a03d1aacc45d43d6397962c50ed779ab7e4019d73af11d2f0b3831b"},
{file = "gym_pusht-0.1.3.tar.gz", hash = "sha256:c8e9a5256035ba49841ebbc7c32a06c4fa2daa52f5fad80da941b607c4553e28"},
]
[package.dependencies]
gymnasium = ">=0.29.1,<0.30.0"
opencv-python = ">=4.9.0.80,<5.0.0.0"
pygame = ">=2.5.2,<3.0.0"
pymunk = ">=6.6.0,<7.0.0"
gymnasium = ">=0.29.1"
opencv-python = ">=4.9.0"
pygame = ">=2.5.2"
pymunk = ">=6.6.0"
scikit-image = ">=0.22.0"
shapely = ">=2.0.3,<3.0.0"
shapely = ">=2.0.3"
[package.extras]
dev = ["debugpy (>=1.8.1,<2.0.0)", "pre-commit (>=3.7.0,<4.0.0)"]
test = ["pytest (>=8.1.0,<9.0.0)", "pytest-cov (>=5.0.0,<6.0.0)"]
dev = ["debugpy (>=1.8.1)", "pre-commit (>=3.7.0)"]
test = ["pytest (>=8.1.0)", "pytest-cov (>=5.0.0)"]
[[package]]
name = "gym-xarm"
version = "0.1.0"
version = "0.1.1"
description = "A gym environment for xArm"
optional = true
python-versions = "<4.0,>=3.10"
files = [
{file = "gym_xarm-0.1.0-py3-none-any.whl", hash = "sha256:d10ac19a59d302201a9b8bd913530211b1058467b787ad91a657907e40cdbc13"},
{file = "gym_xarm-0.1.0.tar.gz", hash = "sha256:fc05f9d02af1f0205275311669dc191ce431be484e221a96401eb544764eb986"},
{file = "gym_xarm-0.1.1-py3-none-any.whl", hash = "sha256:3bd7e3c1c5521ba80a56536f01a5e11321580704d72160355ce47a828a8808ad"},
{file = "gym_xarm-0.1.1.tar.gz", hash = "sha256:e455524561b02d06b92a4f7d524f448d84a7484d9a2dbc78600e3c66240e0fb7"},
]
[package.dependencies]
gymnasium = ">=0.29.1,<0.30.0"
gymnasium-robotics = ">=1.2.4,<2.0.0"
gymnasium = ">=0.29.1"
gymnasium-robotics = ">=1.2.4"
mujoco = ">=2.3.7,<3.0.0"
[package.extras]
dev = ["debugpy (>=1.8.1,<2.0.0)", "pre-commit (>=3.7.0,<4.0.0)"]
test = ["pytest (>=8.1.0,<9.0.0)", "pytest-cov (>=5.0.0,<6.0.0)"]
dev = ["debugpy (>=1.8.1)", "pre-commit (>=3.7.0)"]
test = ["pytest (>=8.1.0)", "pytest-cov (>=5.0.0)"]
[[package]]
name = "gymnasium"
@ -1258,13 +1247,13 @@ numpy = ">=1.17.3"
[[package]]
name = "huggingface-hub"
version = "0.21.4"
version = "0.23.0"
description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
optional = false
python-versions = ">=3.8.0"
files = [
{file = "huggingface_hub-0.21.4-py3-none-any.whl", hash = "sha256:df37c2c37fc6c82163cdd8a67ede261687d80d1e262526d6c0ce73b6b3630a7b"},
{file = "huggingface_hub-0.21.4.tar.gz", hash = "sha256:e1f4968c93726565a80edf6dc309763c7b546d0cfe79aa221206034d50155531"},
{file = "huggingface_hub-0.23.0-py3-none-any.whl", hash = "sha256:075c30d48ee7db2bba779190dc526d2c11d422aed6f9044c5e2fdc2c432fdb91"},
{file = "huggingface_hub-0.23.0.tar.gz", hash = "sha256:7126dedd10a4c6fac796ced4d87a8cf004efc722a5125c2c09299017fa366fa9"},
]
[package.dependencies]
@ -1277,15 +1266,16 @@ tqdm = ">=4.42.1"
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "mypy (==1.5.1)", "numpy", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.1.3)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"]
all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"]
cli = ["InquirerPy (==0.3.4)"]
dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "mypy (==1.5.1)", "numpy", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.1.3)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"]
dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"]
fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"]
hf-transfer = ["hf-transfer (>=0.1.4)"]
inference = ["aiohttp", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)"]
quality = ["mypy (==1.5.1)", "ruff (>=0.1.3)"]
inference = ["aiohttp", "minijinja (>=1.0)"]
quality = ["mypy (==1.5.1)", "ruff (>=0.3.0)"]
tensorflow = ["graphviz", "pydot", "tensorflow"]
testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "numpy", "pydantic (>1.1,<2.0)", "pydantic (>1.1,<3.0)", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"]
tensorflow-testing = ["keras (<3.0)", "tensorflow"]
testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"]
torch = ["safetensors", "torch"]
typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"]
@ -2587,7 +2577,7 @@ xmp = ["defusedxml"]
name = "platformdirs"
version = "4.2.1"
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`."
optional = true
optional = false
python-versions = ">=3.8"
files = [
{file = "platformdirs-4.2.1-py3-none-any.whl", hash = "sha256:17d5a1161b3fd67b390023cb2d3b026bbd40abde6fdb052dfbd3a29c3ba22ee1"},
@ -2616,13 +2606,13 @@ testing = ["pytest", "pytest-benchmark"]
[[package]]
name = "pre-commit"
version = "3.7.0"
version = "3.7.1"
description = "A framework for managing and maintaining multi-language pre-commit hooks."
optional = true
python-versions = ">=3.9"
files = [
{file = "pre_commit-3.7.0-py2.py3-none-any.whl", hash = "sha256:5eae9e10c2b5ac51577c3452ec0a490455c45a0533f7960f993a0d01e59decab"},
{file = "pre_commit-3.7.0.tar.gz", hash = "sha256:e209d61b8acdcf742404408531f0c37d49d2c734fd7cff2d6076083d191cb060"},
{file = "pre_commit-3.7.1-py2.py3-none-any.whl", hash = "sha256:fae36fd1d7ad7d6a5a1c0b0d5adb2ed1a3bda5a21bf6c3e5372073d7a11cd4c5"},
{file = "pre_commit-3.7.1.tar.gz", hash = "sha256:8ca3ad567bc78a4972a3f1a477e94a79d4597e8140a6e0b651c5e33899c3654a"},
]
[package.dependencies]
@ -2870,67 +2860,67 @@ files = [
[[package]]
name = "pymunk"
version = "6.7.0"
version = "6.8.0"
description = "Pymunk is a easy-to-use pythonic 2D physics library"
optional = false
python-versions = ">=3.7"
files = [
{file = "pymunk-6.7.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4378774daf5cf2603c0558562221ba5a2ba9c6d7e4d830f4da9e1d6a00e6f3cd"},
{file = "pymunk-6.7.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:badbdbf499f79c3e937ba7044c3ce3a665d6ae76c2a7df2408994e07fd78b34b"},
{file = "pymunk-6.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46835d63bdcc579a488d2dfbc7cbec52bfc34a4ceb15086820d1372f70cb8695"},
{file = "pymunk-6.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c63f0153bcb4080cd83f3d40cec4f525773ac0f4ac2bf9b9506c2fa8af7b4e41"},
{file = "pymunk-6.7.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:72596e57997856817202580557a4f4b46a0b1ddf0fbbbadf978f46778d5aa642"},
{file = "pymunk-6.7.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:43099a916c2bbd9740a740f259bb26341e8cb54fb0c06192ea0cc27606552596"},
{file = "pymunk-6.7.0-cp310-cp310-win32.whl", hash = "sha256:2cf770c8ae5d14c51b7021768bf73b7c8c62d786d703dd9f6e1ec3ea12966f91"},
{file = "pymunk-6.7.0-cp310-cp310-win_amd64.whl", hash = "sha256:e0ea3a7cab752bc5078c202e40bf4db81435fd1d121190e851a960a1b9a070df"},
{file = "pymunk-6.7.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:803c0dfb8be18a8fac5d37732d7db29589d6157594a22608fa5e34ee87a5ff8e"},
{file = "pymunk-6.7.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e82f817cdddd3b9babebc1ce964eed55f8d5686475b92e3e6d3d22dca5b93f3c"},
{file = "pymunk-6.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3693a1aeb4ce8a68574b3b7557c6a1e15ce420820b850f95f34ab24663fdcb11"},
{file = "pymunk-6.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0f32b352a87ad1705bfedef133253da697e9a0eeff764e125414a63231bfb06e"},
{file = "pymunk-6.7.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7ec996c4305666336c3e2908b59e0644f4095a526ed2f96f0f8d35bdc41a4575"},
{file = "pymunk-6.7.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7e54923293dfa51c41f222d967cb3b79872f35a4a892ae0bd31bad9cefd1b8a6"},
{file = "pymunk-6.7.0-cp311-cp311-win32.whl", hash = "sha256:d4622c2927789d7bc834763569fb4a947c266702eb9e5f12f815bd841c49f669"},
{file = "pymunk-6.7.0-cp311-cp311-win_amd64.whl", hash = "sha256:031c74ed42e49474ca4fcdc11a9521c2084514d2213cb8b7df7cb50a66b66686"},
{file = "pymunk-6.7.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c2316d188a9fc6d0661afc30fbb164a546b939faf359e98f082641ca41c924e2"},
{file = "pymunk-6.7.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5f494effad0dbd873851b52b22c1a812fe36f1fb1e29d28759066cee1afca1e9"},
{file = "pymunk-6.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:895deeae5a9c2ef3bbb842ef5d37e750160c8ba956a4149fbb89304eb7b4808e"},
{file = "pymunk-6.7.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f672762c176ba51c2327f7a66db10c0adfb5f3caaa4f586098c62c169b311f87"},
{file = "pymunk-6.7.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:9f0e26d53cb5aaf22042de97638c356d25c1062198594390a18810f2992cd4b5"},
{file = "pymunk-6.7.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c4985590a95d419a7684f2c01b33fc61e939debaae7b12d1cf0946070c1644f9"},
{file = "pymunk-6.7.0-cp312-cp312-win32.whl", hash = "sha256:b63875005eee0126a0be32cfd9179be520a2f73235ae98408af2ba39255f8e07"},
{file = "pymunk-6.7.0-cp312-cp312-win_amd64.whl", hash = "sha256:4a9438d29c1f0397b45b328f74eaed097593de03d8d0546fa84c20c3a5f158e6"},
{file = "pymunk-6.7.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:630ddc4a03f4ac9d5dfd13bb99e20146d804683212defb8d0633fbf4844035b4"},
{file = "pymunk-6.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca0c565e7c8ff8bc2ee477ed712973609a77a229e813a7a18c499ff5b96415a7"},
{file = "pymunk-6.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0f0d79e89fc3ccee6007380a9df493017c178a606446a1382fc0e351bd48622d"},
{file = "pymunk-6.7.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:827180ee032b3237be2980712cdfe1446c2f7aeeb7f13518ebb4cc022995d235"},
{file = "pymunk-6.7.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c401a6068b376dcd3d25948b498cea410e15a93108c4d8e03c94f9b61767593b"},
{file = "pymunk-6.7.0-cp37-cp37m-win32.whl", hash = "sha256:a38d8b70c6a7198fc0e746ab8dfedd70f9bf26579b6cd11789f3232f27d247fb"},
{file = "pymunk-6.7.0-cp37-cp37m-win_amd64.whl", hash = "sha256:283746a11658288903af182605f1034bc5cffbb5de49fd4d8bea43330778ddfb"},
{file = "pymunk-6.7.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8376aad8169a13a5368c597cf54b492f6dd6ef4c9273385af461b6f416f0205a"},
{file = "pymunk-6.7.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0bf0ec5142ae387789eca6210a315508943a0af14faf337154c1c6b2e20abaad"},
{file = "pymunk-6.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e5469182821d23e43e1fe50b21a313f798eefafc59b0f25dd69a7b579cdbbbc"},
{file = "pymunk-6.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cee5c5da3f624c1b4f10e566f6322f354f0925dc081c1d6dfdb56fa94ff6b2b7"},
{file = "pymunk-6.7.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:130234abfb503a9d3aba57161bf7520eb57c27278ad6f47888f862a2808b1f8d"},
{file = "pymunk-6.7.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:3532965ba0048057ce00eccbafca818586acabf77c4453d36e9be5f614dab260"},
{file = "pymunk-6.7.0-cp38-cp38-win32.whl", hash = "sha256:3dca5b72c34f4957c039ced8bd58ca484b929f0f6c4fc4f8a2268d89999d3b13"},
{file = "pymunk-6.7.0-cp38-cp38-win_amd64.whl", hash = "sha256:aaac3b0a2446575cf0fa90745ef6b99cd786837e1baaf2f530febf2824d07276"},
{file = "pymunk-6.7.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6ee13324c8fdfdab03069eef00aadfe06d353d9d6c5e4a93e190c9b214166f8b"},
{file = "pymunk-6.7.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1fd1069c95061feebf7dfbbb32a2150e019d06001a0c8281442d27366d2a6f21"},
{file = "pymunk-6.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7aeac2ba24977aae4e602a993c17c265f168374b018d09e13536c1df61cf4d5"},
{file = "pymunk-6.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e78eb9f6b6a7656837698ea9a6ceea00d84959de3126e625de41cf240084dba6"},
{file = "pymunk-6.7.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:927fa4262c62f409e79806ef282a3bee1dab5a69e680e5cf2ba26b58c850e9be"},
{file = "pymunk-6.7.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c127f39bd23c93e82f0ee0adc1edbd8ebdda441d12f9d09987372be9852edb74"},
{file = "pymunk-6.7.0-cp39-cp39-win32.whl", hash = "sha256:ce582ae06e6fe8e8d1ad10dc061fe5716b360ea04b79925532d96848741a5452"},
{file = "pymunk-6.7.0-cp39-cp39-win_amd64.whl", hash = "sha256:04874a4063270db73bd2e6b3522d2e6ffb193a183d06872bb1270385475412f8"},
{file = "pymunk-6.7.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:032daa41f9219749e52b1ff3312cdff3eab24c31ec8495777da89003667137ad"},
{file = "pymunk-6.7.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210e067b29fda70a8c21f09a9a900d0b917d425e6d47209426e5b88388bd2a06"},
{file = "pymunk-6.7.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:046e510d76976c41cd92b3d5b985c930f0a568c2fb4f0632e40aaab4619ad481"},
{file = "pymunk-6.7.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:27a4104a51ae690fc0feb2a567279234307decaf86214382a1dce89527365422"},
{file = "pymunk-6.7.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8ac7b714a8fc83325519254c6734baa9dd1498210c6d5e51facfd829a6b2de09"},
{file = "pymunk-6.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:09b22ce73222c5f7cf061f6cd71097c94f57c89b6364acfc30f707ca1d3c67e2"},
{file = "pymunk-6.7.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3313c5531e6678f249bc1cf84cb5c4993745e8652853f1962919678f6a0b4ec3"},
{file = "pymunk-6.7.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:d8aaaebdd546b9b76d4905039835910a5965fff816261ce2b9558a7607206f52"},
{file = "pymunk-6.7.0.tar.gz", hash = "sha256:7b3bff3852c46a87b497a1a73bb36bb2b2f7e38be2e7c232498b857e79197560"},
{file = "pymunk-6.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:96b363241569e616bea1d62346552e3503f2b58d6715b5bda20a13ba2522cea2"},
{file = "pymunk-6.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:91aab5c0640cddaf100eaaf6df8578aa3b97b70c5e5e0c1d26f6826eefec8e96"},
{file = "pymunk-6.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78973d4ef0fa715e127ca408f6063c82722b883d98cf216dddd906aa00debf4e"},
{file = "pymunk-6.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7944db455d81bc552fc1b2edadbf82a6b91b11ee75193552ef629d0b8106975b"},
{file = "pymunk-6.8.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:3ec2a1c2a3b2b0eac97ebd2b84dfd51bd98b2b753a33dce81f4f26fa9e1a8974"},
{file = "pymunk-6.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3134ba935921e0e888d9013258f1de111bc2da05a02ec2a7d520a8c580f28fba"},
{file = "pymunk-6.8.0-cp310-cp310-win32.whl", hash = "sha256:a3222cb84481408faf6236f4cea6a17045881e5780a4dccc170344a7a4ad160a"},
{file = "pymunk-6.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:7f13bffe06634f23e0453b0a5e388142cdbaa06f54a243aae98e2b9c2793ebb0"},
{file = "pymunk-6.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b0db72af65205c80d15403e6784bdd7c559e620411394449356dc869b90ade1c"},
{file = "pymunk-6.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d6e5cc30d15eba4bc33e00b9fb8c366255dac47fe486f5276f6334e8a8c34754"},
{file = "pymunk-6.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3752e8486a4b8bfaa988be59a9773f0371d0cd52a7901fe7ba9caed1ea5b6129"},
{file = "pymunk-6.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0f20b3dfc56aee57cc910ce65505286e184e045c9169bd8d5eff50974b6a1e97"},
{file = "pymunk-6.8.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6d807bba8fd7bae35754c29c2cb8809f0cf7817541c8cb4d134872e102899724"},
{file = "pymunk-6.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ac39afd90800061b353cbeb71171109ef7411cc88f5607b10447b2906e4cde97"},
{file = "pymunk-6.8.0-cp311-cp311-win32.whl", hash = "sha256:4de7683f832c694b82dbe7c20469765663f06ee82f8b711bd72731684b452889"},
{file = "pymunk-6.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:6620fc590290c37e58c8495fb74e5eb433f24b7c7d46c8a7b4b54c56ca9990ab"},
{file = "pymunk-6.8.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6eee05919e1e8f63b64a75362e82691365918b0ea33af11d2b3aab1d81402a3d"},
{file = "pymunk-6.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1b99fa28a8fa5242560a7f2d59604b9e55eed865d8308dd5f93af97ad2605f84"},
{file = "pymunk-6.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d9be0614a4c0eaaff209656df464e9eb5653dc171a15230dd4d307a3f3564e6"},
{file = "pymunk-6.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2c22598b75ef99dd70fb2c6b8989c55ab00fac379555ebf68cfe7adfa65fd94e"},
{file = "pymunk-6.8.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:533bb7555df1c904f1056ac9149e59ab039ee195fa22c69500843ef7e3f57062"},
{file = "pymunk-6.8.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9de831180f7650c47fcfcadadf5d295e72065c8500a4c9a78f6d37229c2ca58b"},
{file = "pymunk-6.8.0-cp312-cp312-win32.whl", hash = "sha256:8bbc9189c71a6c51825f8246e94c6642823ef42a4b3ed9c2afa7f8ec48425929"},
{file = "pymunk-6.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:e3b61a162153dfdd0ebbab82eddb417da812085b3587ebf92a225d33df8e044d"},
{file = "pymunk-6.8.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8a4fa8e3672a3b49850adf71b0eabacabb73db0514cbece0649bc77e1a124924"},
{file = "pymunk-6.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ada172ee87296fdfdf5ac0d88c43502b482697185ce9b6d03d0f0d4b5b11532"},
{file = "pymunk-6.8.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c0c9d881ca7d9a9375ce248e90f24efb298d41e4abf8e16f5c7e78c66983c34"},
{file = "pymunk-6.8.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e5a6e2a7ff652b2977e24b4ed2d33fc7d628bd4e54ddeb488515b1475f715d91"},
{file = "pymunk-6.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:12f0af3417a95c5ab97207a5e54fbc91a54c801b4560283532f5582401a1f36e"},
{file = "pymunk-6.8.0-cp37-cp37m-win32.whl", hash = "sha256:382aaa71d7615ded7cfc644a091391cf0fd3ecf7bc556e0145d0f6982c942ee7"},
{file = "pymunk-6.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c40361a2b017107303568ace3e506d87ab46d67d31484f656ba7792901d20abd"},
{file = "pymunk-6.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:54167f0f9b65a49f35fbde56746ce7020b74b39b86ef8cec8804ef9422d258c9"},
{file = "pymunk-6.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3e32c520ba2729c97fd5031cc0caa99de20a9b6dda85b8468cf769afa7a4a85c"},
{file = "pymunk-6.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93c86daf68fb0785722cbea3fc36afcf9830af156de9ed99cbf2b6d6475240ab"},
{file = "pymunk-6.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:269576ad7d4241c75611df0f0e3ff0b19de436f4facabb21185e579a573c91d0"},
{file = "pymunk-6.8.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a4c90c82e6dfd35930ad779287859c3a867518065fce97fee6eeaf81a1754ea6"},
{file = "pymunk-6.8.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06b5ce0a26a26b3490107c962632f4dd53137df14e11b0e55c9816005509dea1"},
{file = "pymunk-6.8.0-cp38-cp38-win32.whl", hash = "sha256:ff3b4d086f47f4fee9980977ec4f1121909b5456ed05fcad3c0f2f6e224e1fef"},
{file = "pymunk-6.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:82d8f7124ab9e5c69ab698d3836dc0d84e1a31d47b5e7ce6477cf5205d701887"},
{file = "pymunk-6.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:47803f8229b95e9ae56cada9566e1b92b2789affe2229ed623d3a871fd307982"},
{file = "pymunk-6.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:194cf34146b7393ebdd2e37cb50d5579e737baf378f900a50ff477c909a163c9"},
{file = "pymunk-6.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af8d9d0a26dc4d504ac881407ac9d7689b0c89bf8c0535717c15583773eb965"},
{file = "pymunk-6.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79c50449c12120d05fdf515e4c937220580f945ed1eda8c374734a3418fc18e6"},
{file = "pymunk-6.8.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:45197c7fcebff6bc3d4b7f3ccef150a6c4c43f71860e03503e851c8ecc0af861"},
{file = "pymunk-6.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:183ecbbafffe8a071ffb0efb6a5daa21f05d2b9a36c0538b47fbd15b6e6fa6e5"},
{file = "pymunk-6.8.0-cp39-cp39-win32.whl", hash = "sha256:2453eff73e474c1f282088e70a5dfd970ebc9f565c1b39b1da69df1b43dee47f"},
{file = "pymunk-6.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:769aae66d3918fa7d9ac33fca4e693a53aba1ed801050450c1a42b4c8ecc7250"},
{file = "pymunk-6.8.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:22153b93074e8f397e245aad2811e50ccc94502616341a1420c2a3a7332c1db0"},
{file = "pymunk-6.8.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b6d5d62b1f8ad3b8626be64817bed709edbbd03b578e33ae3e39ab7f9301055"},
{file = "pymunk-6.8.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:50d9ff9e7caa3a7f432f4c6da4d1acd0dd1208ca22fc4cea3d48d845ac4111b3"},
{file = "pymunk-6.8.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:b0688613c641c5a018091ba9285a38cb6e53a64daa9ec3bc80006ea6c4531a32"},
{file = "pymunk-6.8.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:42cf265d55dd90ab3441c9e0a1596094372b063713760d2a5489321d1b9beddb"},
{file = "pymunk-6.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f199f1f291f7ad8ec3c00d529c6207bb7a67497b6ecd79ffb27df1aabe973d7"},
{file = "pymunk-6.8.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79fe51090090f4dd4e41603bbc46926be4bae3c3f554664b907fc3fda65019f8"},
{file = "pymunk-6.8.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:03100f749d276742244d560e12ae125cbcf13606d24fd60455b52d5b9a9f7a17"},
{file = "pymunk-6.8.0.tar.gz", hash = "sha256:882929eac3cc5107bec13da7bbe9b6a3868df87ecc373475d0d1aae82d2f5dda"},
]
[package.dependencies]
@ -3102,90 +3092,90 @@ files = [
[[package]]
name = "regex"
version = "2024.4.28"
version = "2024.5.10"
description = "Alternative regular expression module, to replace re."
optional = false
python-versions = ">=3.8"
files = [
{file = "regex-2024.4.28-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd196d056b40af073d95a2879678585f0b74ad35190fac04ca67954c582c6b61"},
{file = "regex-2024.4.28-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8bb381f777351bd534462f63e1c6afb10a7caa9fa2a421ae22c26e796fe31b1f"},
{file = "regex-2024.4.28-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:47af45b6153522733aa6e92543938e97a70ce0900649ba626cf5aad290b737b6"},
{file = "regex-2024.4.28-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99d6a550425cc51c656331af0e2b1651e90eaaa23fb4acde577cf15068e2e20f"},
{file = "regex-2024.4.28-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bf29304a8011feb58913c382902fde3395957a47645bf848eea695839aa101b7"},
{file = "regex-2024.4.28-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:92da587eee39a52c91aebea8b850e4e4f095fe5928d415cb7ed656b3460ae79a"},
{file = "regex-2024.4.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6277d426e2f31bdbacb377d17a7475e32b2d7d1f02faaecc48d8e370c6a3ff31"},
{file = "regex-2024.4.28-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:28e1f28d07220c0f3da0e8fcd5a115bbb53f8b55cecf9bec0c946eb9a059a94c"},
{file = "regex-2024.4.28-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:aaa179975a64790c1f2701ac562b5eeb733946eeb036b5bcca05c8d928a62f10"},
{file = "regex-2024.4.28-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6f435946b7bf7a1b438b4e6b149b947c837cb23c704e780c19ba3e6855dbbdd3"},
{file = "regex-2024.4.28-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:19d6c11bf35a6ad077eb23852827f91c804eeb71ecb85db4ee1386825b9dc4db"},
{file = "regex-2024.4.28-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:fdae0120cddc839eb8e3c15faa8ad541cc6d906d3eb24d82fb041cfe2807bc1e"},
{file = "regex-2024.4.28-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:e672cf9caaf669053121f1766d659a8813bd547edef6e009205378faf45c67b8"},
{file = "regex-2024.4.28-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f57515750d07e14743db55d59759893fdb21d2668f39e549a7d6cad5d70f9fea"},
{file = "regex-2024.4.28-cp310-cp310-win32.whl", hash = "sha256:a1409c4eccb6981c7baabc8888d3550df518add6e06fe74fa1d9312c1838652d"},
{file = "regex-2024.4.28-cp310-cp310-win_amd64.whl", hash = "sha256:1f687a28640f763f23f8a9801fe9e1b37338bb1ca5d564ddd41619458f1f22d1"},
{file = "regex-2024.4.28-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:84077821c85f222362b72fdc44f7a3a13587a013a45cf14534df1cbbdc9a6796"},
{file = "regex-2024.4.28-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b45d4503de8f4f3dc02f1d28a9b039e5504a02cc18906cfe744c11def942e9eb"},
{file = "regex-2024.4.28-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:457c2cd5a646dd4ed536c92b535d73548fb8e216ebee602aa9f48e068fc393f3"},
{file = "regex-2024.4.28-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b51739ddfd013c6f657b55a508de8b9ea78b56d22b236052c3a85a675102dc6"},
{file = "regex-2024.4.28-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:459226445c7d7454981c4c0ce0ad1a72e1e751c3e417f305722bbcee6697e06a"},
{file = "regex-2024.4.28-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:670fa596984b08a4a769491cbdf22350431970d0112e03d7e4eeaecaafcd0fec"},
{file = "regex-2024.4.28-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe00f4fe11c8a521b173e6324d862ee7ee3412bf7107570c9b564fe1119b56fb"},
{file = "regex-2024.4.28-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:36f392dc7763fe7924575475736bddf9ab9f7a66b920932d0ea50c2ded2f5636"},
{file = "regex-2024.4.28-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:23a412b7b1a7063f81a742463f38821097b6a37ce1e5b89dd8e871d14dbfd86b"},
{file = "regex-2024.4.28-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f1d6e4b7b2ae3a6a9df53efbf199e4bfcff0959dbdb5fd9ced34d4407348e39a"},
{file = "regex-2024.4.28-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:499334ad139557de97cbc4347ee921c0e2b5e9c0f009859e74f3f77918339257"},
{file = "regex-2024.4.28-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:0940038bec2fe9e26b203d636c44d31dd8766abc1fe66262da6484bd82461ccf"},
{file = "regex-2024.4.28-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:66372c2a01782c5fe8e04bff4a2a0121a9897e19223d9eab30c54c50b2ebeb7f"},
{file = "regex-2024.4.28-cp311-cp311-win32.whl", hash = "sha256:c77d10ec3c1cf328b2f501ca32583625987ea0f23a0c2a49b37a39ee5c4c4630"},
{file = "regex-2024.4.28-cp311-cp311-win_amd64.whl", hash = "sha256:fc0916c4295c64d6890a46e02d4482bb5ccf33bf1a824c0eaa9e83b148291f90"},
{file = "regex-2024.4.28-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:08a1749f04fee2811c7617fdd46d2e46d09106fa8f475c884b65c01326eb15c5"},
{file = "regex-2024.4.28-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b8eb28995771c087a73338f695a08c9abfdf723d185e57b97f6175c5051ff1ae"},
{file = "regex-2024.4.28-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:dd7ef715ccb8040954d44cfeff17e6b8e9f79c8019daae2fd30a8806ef5435c0"},
{file = "regex-2024.4.28-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb0315a2b26fde4005a7c401707c5352df274460f2f85b209cf6024271373013"},
{file = "regex-2024.4.28-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f2fc053228a6bd3a17a9b0a3f15c3ab3cf95727b00557e92e1cfe094b88cc662"},
{file = "regex-2024.4.28-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7fe9739a686dc44733d52d6e4f7b9c77b285e49edf8570754b322bca6b85b4cc"},
{file = "regex-2024.4.28-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a74fcf77d979364f9b69fcf8200849ca29a374973dc193a7317698aa37d8b01c"},
{file = "regex-2024.4.28-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:965fd0cf4694d76f6564896b422724ec7b959ef927a7cb187fc6b3f4e4f59833"},
{file = "regex-2024.4.28-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:2fef0b38c34ae675fcbb1b5db760d40c3fc3612cfa186e9e50df5782cac02bcd"},
{file = "regex-2024.4.28-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bc365ce25f6c7c5ed70e4bc674f9137f52b7dd6a125037f9132a7be52b8a252f"},
{file = "regex-2024.4.28-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:ac69b394764bb857429b031d29d9604842bc4cbfd964d764b1af1868eeebc4f0"},
{file = "regex-2024.4.28-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:144a1fc54765f5c5c36d6d4b073299832aa1ec6a746a6452c3ee7b46b3d3b11d"},
{file = "regex-2024.4.28-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2630ca4e152c221072fd4a56d4622b5ada876f668ecd24d5ab62544ae6793ed6"},
{file = "regex-2024.4.28-cp312-cp312-win32.whl", hash = "sha256:7f3502f03b4da52bbe8ba962621daa846f38489cae5c4a7b5d738f15f6443d17"},
{file = "regex-2024.4.28-cp312-cp312-win_amd64.whl", hash = "sha256:0dd3f69098511e71880fb00f5815db9ed0ef62c05775395968299cb400aeab82"},
{file = "regex-2024.4.28-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:374f690e1dd0dbdcddea4a5c9bdd97632cf656c69113f7cd6a361f2a67221cb6"},
{file = "regex-2024.4.28-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25f87ae6b96374db20f180eab083aafe419b194e96e4f282c40191e71980c666"},
{file = "regex-2024.4.28-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5dbc1bcc7413eebe5f18196e22804a3be1bfdfc7e2afd415e12c068624d48247"},
{file = "regex-2024.4.28-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f85151ec5a232335f1be022b09fbbe459042ea1951d8a48fef251223fc67eee1"},
{file = "regex-2024.4.28-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:57ba112e5530530fd175ed550373eb263db4ca98b5f00694d73b18b9a02e7185"},
{file = "regex-2024.4.28-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:224803b74aab56aa7be313f92a8d9911dcade37e5f167db62a738d0c85fdac4b"},
{file = "regex-2024.4.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a54a047b607fd2d2d52a05e6ad294602f1e0dec2291152b745870afc47c1397"},
{file = "regex-2024.4.28-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a2a512d623f1f2d01d881513af9fc6a7c46e5cfffb7dc50c38ce959f9246c94"},
{file = "regex-2024.4.28-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c06bf3f38f0707592898428636cbb75d0a846651b053a1cf748763e3063a6925"},
{file = "regex-2024.4.28-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1031a5e7b048ee371ab3653aad3030ecfad6ee9ecdc85f0242c57751a05b0ac4"},
{file = "regex-2024.4.28-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d7a353ebfa7154c871a35caca7bfd8f9e18666829a1dc187115b80e35a29393e"},
{file = "regex-2024.4.28-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:7e76b9cfbf5ced1aca15a0e5b6f229344d9b3123439ffce552b11faab0114a02"},
{file = "regex-2024.4.28-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:5ce479ecc068bc2a74cb98dd8dba99e070d1b2f4a8371a7dfe631f85db70fe6e"},
{file = "regex-2024.4.28-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:7d77b6f63f806578c604dca209280e4c54f0fa9a8128bb8d2cc5fb6f99da4150"},
{file = "regex-2024.4.28-cp38-cp38-win32.whl", hash = "sha256:d84308f097d7a513359757c69707ad339da799e53b7393819ec2ea36bc4beb58"},
{file = "regex-2024.4.28-cp38-cp38-win_amd64.whl", hash = "sha256:2cc1b87bba1dd1a898e664a31012725e48af826bf3971e786c53e32e02adae6c"},
{file = "regex-2024.4.28-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7413167c507a768eafb5424413c5b2f515c606be5bb4ef8c5dee43925aa5718b"},
{file = "regex-2024.4.28-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:108e2dcf0b53a7c4ab8986842a8edcb8ab2e59919a74ff51c296772e8e74d0ae"},
{file = "regex-2024.4.28-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f1c5742c31ba7d72f2dedf7968998730664b45e38827637e0f04a2ac7de2f5f1"},
{file = "regex-2024.4.28-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ecc6148228c9ae25ce403eade13a0961de1cb016bdb35c6eafd8e7b87ad028b1"},
{file = "regex-2024.4.28-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b7d893c8cf0e2429b823ef1a1d360a25950ed11f0e2a9df2b5198821832e1947"},
{file = "regex-2024.4.28-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4290035b169578ffbbfa50d904d26bec16a94526071ebec3dadbebf67a26b25e"},
{file = "regex-2024.4.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44a22ae1cfd82e4ffa2066eb3390777dc79468f866f0625261a93e44cdf6482b"},
{file = "regex-2024.4.28-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fd24fd140b69f0b0bcc9165c397e9b2e89ecbeda83303abf2a072609f60239e2"},
{file = "regex-2024.4.28-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:39fb166d2196413bead229cd64a2ffd6ec78ebab83fff7d2701103cf9f4dfd26"},
{file = "regex-2024.4.28-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9301cc6db4d83d2c0719f7fcda37229691745168bf6ae849bea2e85fc769175d"},
{file = "regex-2024.4.28-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7c3d389e8d76a49923683123730c33e9553063d9041658f23897f0b396b2386f"},
{file = "regex-2024.4.28-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:99ef6289b62042500d581170d06e17f5353b111a15aa6b25b05b91c6886df8fc"},
{file = "regex-2024.4.28-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:b91d529b47798c016d4b4c1d06cc826ac40d196da54f0de3c519f5a297c5076a"},
{file = "regex-2024.4.28-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:43548ad74ea50456e1c68d3c67fff3de64c6edb85bcd511d1136f9b5376fc9d1"},
{file = "regex-2024.4.28-cp39-cp39-win32.whl", hash = "sha256:05d9b6578a22db7dedb4df81451f360395828b04f4513980b6bd7a1412c679cc"},
{file = "regex-2024.4.28-cp39-cp39-win_amd64.whl", hash = "sha256:3986217ec830c2109875be740531feb8ddafe0dfa49767cdcd072ed7e8927962"},
{file = "regex-2024.4.28.tar.gz", hash = "sha256:83ab366777ea45d58f72593adf35d36ca911ea8bd838483c1823b883a121b0e4"},
{file = "regex-2024.5.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:eda3dd46df535da787ffb9036b5140f941ecb91701717df91c9daf64cabef953"},
{file = "regex-2024.5.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1d5bd666466c8f00a06886ce1397ba8b12371c1f1c6d1bef11013e9e0a1464a8"},
{file = "regex-2024.5.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:32e5f3b8e32918bfbdd12eca62e49ab3031125c454b507127ad6ecbd86e62fca"},
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:534efd2653ebc4f26fc0e47234e53bf0cb4715bb61f98c64d2774a278b58c846"},
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:193b7c6834a06f722f0ce1ba685efe80881de7c3de31415513862f601097648c"},
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:160ba087232c5c6e2a1e7ad08bd3a3f49b58c815be0504d8c8aacfb064491cd8"},
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951be1eae7b47660412dc4938777a975ebc41936d64e28081bf2e584b47ec246"},
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8a0f0ab5453e409586b11ebe91c672040bc804ca98d03a656825f7890cbdf88"},
{file = "regex-2024.5.10-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9e6d4d6ae1827b2f8c7200aaf7501c37cf3f3896c86a6aaf2566448397c823dd"},
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:161a206c8f3511e2f5fafc9142a2cc25d7fe9a1ec5ad9b4ad2496a7c33e1c5d2"},
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:44b3267cea873684af022822195298501568ed44d542f9a2d9bebc0212e99069"},
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:560278c9975694e1f0bc50da187abf2cdc1e4890739ea33df2bc4a85eeef143e"},
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:70364a097437dd0a90b31cd77f09f7387ad9ac60ef57590971f43b7fca3082a5"},
{file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:42be5de7cc8c1edac55db92d82b68dc8e683b204d6f5414c5a51997a323d7081"},
{file = "regex-2024.5.10-cp310-cp310-win32.whl", hash = "sha256:9a8625849387b9d558d528e263ecc9c0fbde86cfa5c2f0eef43fff480ae24d71"},
{file = "regex-2024.5.10-cp310-cp310-win_amd64.whl", hash = "sha256:903350bf44d7e4116b4d5898b30b15755d61dcd3161e3413a49c7db76f0bee5a"},
{file = "regex-2024.5.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bf9596cba92ce7b1fd32c7b07c6e3212c7eed0edc271757e48bfcd2b54646452"},
{file = "regex-2024.5.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:45cc13d398b6359a7708986386f72bd156ae781c3e83a68a6d4cee5af04b1ce9"},
{file = "regex-2024.5.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ad45f3bccfcb00868f2871dce02a755529838d2b86163ab8a246115e80cfb7d6"},
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33d19f0cde6838c81acffff25c7708e4adc7dd02896c9ec25c3939b1500a1778"},
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0a9f89d7db5ef6bdf53e5cc8e6199a493d0f1374b3171796b464a74ebe8e508a"},
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8c6c71cf92b09e5faa72ea2c68aa1f61c9ce11cb66fdc5069d712f4392ddfd00"},
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7467ad8b0eac0b28e52679e972b9b234b3de0ea5cee12eb50091d2b68145fe36"},
{file = "regex-2024.5.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc0db93ad039fc2fe32ccd3dd0e0e70c4f3d6e37ae83f0a487e1aba939bd2fbd"},
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fa9335674d7c819674467c7b46154196c51efbaf5f5715187fd366814ba3fa39"},
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7dda3091838206969c2b286f9832dff41e2da545b99d1cfaea9ebd8584d02708"},
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:504b5116e2bd1821efd815941edff7535e93372a098e156bb9dffde30264e798"},
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:91b53dea84415e8115506cc62e441a2b54537359c63d856d73cb1abe05af4c9a"},
{file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1a3903128f9e17a500618e80c68165c78c741ebb17dd1a0b44575f92c3c68b02"},
{file = "regex-2024.5.10-cp311-cp311-win32.whl", hash = "sha256:236cace6c1903effd647ed46ce6dd5d76d54985fc36dafc5256032886736c85d"},
{file = "regex-2024.5.10-cp311-cp311-win_amd64.whl", hash = "sha256:12446827f43c7881decf2c126762e11425de5eb93b3b0d8b581344c16db7047a"},
{file = "regex-2024.5.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:14905ed75c7a6edf423eb46c213ed3f4507c38115f1ed3c00f4ec9eafba50e58"},
{file = "regex-2024.5.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4fad420b14ae1970a1f322e8ae84a1d9d89375eb71e1b504060ab2d1bfe68f3c"},
{file = "regex-2024.5.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c46a76a599fcbf95f98755275c5527304cc4f1bb69919434c1e15544d7052910"},
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0faecb6d5779753a6066a3c7a0471a8d29fe25d9981ca9e552d6d1b8f8b6a594"},
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aab65121229c2ecdf4a31b793d99a6a0501225bd39b616e653c87b219ed34a49"},
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50e7e96a527488334379e05755b210b7da4a60fc5d6481938c1fa053e0c92184"},
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba034c8db4b264ef1601eb33cd23d87c5013b8fb48b8161debe2e5d3bd9156b0"},
{file = "regex-2024.5.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:031219782d97550c2098d9a68ce9e9eaefe67d2d81d8ff84c8354f9c009e720c"},
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:62b5f7910b639f3c1d122d408421317c351e213ca39c964ad4121f27916631c6"},
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:cd832bd9b6120d6074f39bdfbb3c80e416848b07ac72910f1c7f03131a6debc3"},
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:e91b1976358e17197157b405cab408a5f4e33310cda211c49fc6da7cffd0b2f0"},
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:571452362d552de508c37191b6abbbb660028b8b418e2d68c20779e0bc8eaaa8"},
{file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5253dcb0bfda7214523de58b002eb0090cb530d7c55993ce5f6d17faf953ece7"},
{file = "regex-2024.5.10-cp312-cp312-win32.whl", hash = "sha256:2f30a5ab8902f93930dc6f627c4dd5da2703333287081c85cace0fc6e21c25af"},
{file = "regex-2024.5.10-cp312-cp312-win_amd64.whl", hash = "sha256:3799e36d60a35162bb35b2246d8bb012192b7437dff807ef79c14e7352706306"},
{file = "regex-2024.5.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:bbdc5db2c98ac2bf1971ffa1410c87ca7a15800415f788971e8ba8520fc0fda9"},
{file = "regex-2024.5.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6ccdeef4584450b6f0bddd5135354908dacad95425fcb629fe36d13e48b60f32"},
{file = "regex-2024.5.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:29d839829209f3c53f004e1de8c3113efce6d98029f044fa5cfee666253ee7e6"},
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0709ba544cf50bd5cb843df4b8bb6701bae2b70a8e88da9add8386cbca5c1385"},
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:972b49f2fe1047b9249c958ec4fa1bdd2cf8ce305dc19d27546d5a38e57732d8"},
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9cdbb1998da94607d5eec02566b9586f0e70d6438abf1b690261aac0edda7ab6"},
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7c8ee4861d9ef5b1120abb75846828c811f932d63311596ad25fa168053e00"},
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d35d4cc9270944e95f9c88af757b0c9fc43f396917e143a5756608462c5223b"},
{file = "regex-2024.5.10-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8722f72068b3e1156a4b2e1afde6810f1fc67155a9fa30a4b9d5b4bc46f18fb0"},
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:696639a73ca78a380acfaa0a1f6dd8220616a99074c05bba9ba8bb916914b224"},
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea057306ab469130167014b662643cfaed84651c792948891d003cf0039223a5"},
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:b43b78f9386d3d932a6ce5af4b45f393d2e93693ee18dc4800d30a8909df700e"},
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:c43395a3b7cc9862801a65c6994678484f186ce13c929abab44fb8a9e473a55a"},
{file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0bc94873ba11e34837bffd7e5006703abeffc4514e2f482022f46ce05bd25e67"},
{file = "regex-2024.5.10-cp38-cp38-win32.whl", hash = "sha256:1118ba9def608250250f4b3e3f48c62f4562ba16ca58ede491b6e7554bfa09ff"},
{file = "regex-2024.5.10-cp38-cp38-win_amd64.whl", hash = "sha256:458d68d34fb74b906709735c927c029e62f7d06437a98af1b5b6258025223210"},
{file = "regex-2024.5.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:15e593386ec6331e0ab4ac0795b7593f02ab2f4b30a698beb89fbdc34f92386a"},
{file = "regex-2024.5.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ca23b41355ba95929e9505ee04e55495726aa2282003ed9b012d86f857d3e49b"},
{file = "regex-2024.5.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2c8982ee19ccecabbaeac1ba687bfef085a6352a8c64f821ce2f43e6d76a9298"},
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7117cb7d6ac7f2e985f3d18aa8a1728864097da1a677ffa69e970ca215baebf1"},
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b66421f8878a0c82fc0c272a43e2121c8d4c67cb37429b764f0d5ad70b82993b"},
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:224a9269f133564109ce668213ef3cb32bc72ccf040b0b51c72a50e569e9dc9e"},
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab98016541543692a37905871a5ffca59b16e08aacc3d7d10a27297b443f572d"},
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:51d27844763c273a122e08a3e86e7aefa54ee09fb672d96a645ece0454d8425e"},
{file = "regex-2024.5.10-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:853cc36e756ff673bf984e9044ccc8fad60b95a748915dddeab9488aea974c73"},
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4e7eaf9df15423d07b6050fb91f86c66307171b95ea53e2d87a7993b6d02c7f7"},
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:169fd0acd7a259f58f417e492e93d0e15fc87592cd1e971c8c533ad5703b5830"},
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:334b79ce9c08f26b4659a53f42892793948a613c46f1b583e985fd5a6bf1c149"},
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:f03b1dbd4d9596dd84955bb40f7d885204d6aac0d56a919bb1e0ff2fb7e1735a"},
{file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cfa6d61a76c77610ba9274c1a90a453062bdf6887858afbe214d18ad41cf6bde"},
{file = "regex-2024.5.10-cp39-cp39-win32.whl", hash = "sha256:249fbcee0a277c32a3ce36d8e36d50c27c968fdf969e0fbe342658d4e010fbc8"},
{file = "regex-2024.5.10-cp39-cp39-win_amd64.whl", hash = "sha256:0ce56a923f4c01d7568811bfdffe156268c0a7aae8a94c902b92fe34c4bde785"},
{file = "regex-2024.5.10.tar.gz", hash = "sha256:304e7e2418146ae4d0ef0e9ffa28f881f7874b45b4994cc2279b21b6e7ae50c8"},
]
[[package]]
@ -3813,13 +3803,13 @@ tests = ["pytest", "pytest-cov"]
[[package]]
name = "tifffile"
version = "2024.5.3"
version = "2024.5.10"
description = "Read and write TIFF files"
optional = true
python-versions = ">=3.9"
files = [
{file = "tifffile-2024.5.3-py3-none-any.whl", hash = "sha256:cac4d939156ff7f16d65fd689637808a7b5b3ad58f9c73327fc009b0aa32c7d5"},
{file = "tifffile-2024.5.3.tar.gz", hash = "sha256:44521508ecc51ebaf0e47e9748913e9c7331a4e32fb571ff4dfc05cb8f4d8896"},
{file = "tifffile-2024.5.10-py3-none-any.whl", hash = "sha256:4154f091aa24d4e75bfad9ab2d5424a68c70e67b8220188066dc61946d4551bd"},
{file = "tifffile-2024.5.10.tar.gz", hash = "sha256:aa1e1b12be952ab20717d6848bd6d4a5ee88d2aa319f1152bff4354ad728ec86"},
]
[package.dependencies]
@ -4034,36 +4024,40 @@ test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess
[[package]]
name = "wandb"
version = "0.16.6"
version = "0.17.0"
description = "A CLI and library for interacting with the Weights & Biases API."
optional = false
python-versions = ">=3.7"
files = [
{file = "wandb-0.16.6-py3-none-any.whl", hash = "sha256:5810019a3b981c796e98ea58557a7c380f18834e0c6bdaed15df115522e5616e"},
{file = "wandb-0.16.6.tar.gz", hash = "sha256:86f491e3012d715e0d7d7421a4d6de41abef643b7403046261f962f3e512fe1c"},
{file = "wandb-0.17.0-py3-none-any.whl", hash = "sha256:b1b056b4cad83b00436cb76049fd29ecedc6045999dcaa5eba40db6680960ac2"},
{file = "wandb-0.17.0-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:e1e6f04e093a6a027dcb100618ca23b122d032204b2ed4c62e4e991a48041a6b"},
{file = "wandb-0.17.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:feeb60d4ff506d2a6bc67f953b310d70b004faa789479c03ccd1559c6f1a9633"},
{file = "wandb-0.17.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7bed8a3dd404a639e6bf5fea38c6efe2fb98d416ff1db4fb51be741278ed328"},
{file = "wandb-0.17.0-py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56a1dd6e0e635cba3f6ed30b52c71739bdc2a3e57df155619d2d80ee952b4201"},
{file = "wandb-0.17.0-py3-none-win32.whl", hash = "sha256:1f692d3063a0d50474022cfe6668e1828260436d1cd40827d1e136b7f730c74c"},
{file = "wandb-0.17.0-py3-none-win_amd64.whl", hash = "sha256:ab582ca0d54d52ef5b991de0717350b835400d9ac2d3adab210022b68338d694"},
]
[package.dependencies]
appdirs = ">=1.4.3"
Click = ">=7.1,<8.0.0 || >8.0.0"
click = ">=7.1,<8.0.0 || >8.0.0"
docker-pycreds = ">=0.4.0"
GitPython = ">=1.0.0,<3.1.29 || >3.1.29"
gitpython = ">=1.0.0,<3.1.29 || >3.1.29"
platformdirs = "*"
protobuf = {version = ">=3.19.0,<4.21.0 || >4.21.0,<5", markers = "python_version > \"3.9\" or sys_platform != \"linux\""}
psutil = ">=5.0.0"
PyYAML = "*"
pyyaml = "*"
requests = ">=2.0.0,<3"
sentry-sdk = ">=1.0.0"
setproctitle = "*"
setuptools = "*"
[package.extras]
async = ["httpx (>=0.23.0)"]
aws = ["boto3"]
azure = ["azure-identity", "azure-storage-blob"]
gcp = ["google-cloud-storage"]
importers = ["filelock", "mlflow", "polars", "rich", "tenacity"]
kubeflow = ["google-cloud-storage", "kubernetes", "minio", "sh"]
launch = ["PyYAML (>=6.0.0)", "awscli", "azure-containerregistry", "azure-identity", "azure-storage-blob", "boto3", "botocore", "chardet", "google-auth", "google-cloud-aiplatform", "google-cloud-artifact-registry", "google-cloud-compute", "google-cloud-storage", "iso8601", "kubernetes", "kubernetes-asyncio", "nbconvert", "nbformat", "optuna", "pydantic", "tomli", "typing-extensions"]
launch = ["awscli", "azure-containerregistry", "azure-identity", "azure-storage-blob", "boto3", "botocore", "chardet", "google-auth", "google-cloud-aiplatform", "google-cloud-artifact-registry", "google-cloud-compute", "google-cloud-storage", "iso8601", "kubernetes", "kubernetes-asyncio", "nbconvert", "nbformat", "optuna", "pydantic", "pyyaml (>=6.0.0)", "tomli", "typing-extensions"]
media = ["bokeh", "moviepy", "numpy", "pillow", "plotly (>=5.18.0)", "rdkit-pypi", "soundfile"]
models = ["cloudpickle"]
perf = ["orjson"]
@ -4309,13 +4303,13 @@ multidict = ">=4.0"
[[package]]
name = "zarr"
version = "2.17.2"
version = "2.18.0"
description = "An implementation of chunked, compressed, N-dimensional arrays for Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "zarr-2.17.2-py3-none-any.whl", hash = "sha256:70d7cc07c24280c380ef80644151d136b7503b0d83c9f214e8000ddc0f57f69b"},
{file = "zarr-2.17.2.tar.gz", hash = "sha256:2cbaa6cb4e342d45152d4a7a4b2013c337fcd3a8e7bc98253560180de60552ce"},
{file = "zarr-2.18.0-py3-none-any.whl", hash = "sha256:7f8532b6a3f50f22e809e130e09353637ec8b5bb5e95a5a0bfaae91f63978b5d"},
{file = "zarr-2.18.0.tar.gz", hash = "sha256:c3b7d2c85b8a42b0ad0ad268a36fb6886ca852098358c125c6b126a417e0a598"},
]
[package.dependencies]
@ -4354,4 +4348,4 @@ xarm = ["gym-xarm"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "008a6af5ad9d9eafbd933c922c2c5d84fddae85aff8a9eefc0538b1319966f6e"
content-hash = "2f0d2cbf4a2dec546e25b29b9b108ff1f97b4c278b718360b3f7f6a2bf9dcef8"

View File

@ -28,37 +28,37 @@ packages = [{include = "lerobot"}]
[tool.poetry.dependencies]
python = ">=3.10,<3.13"
termcolor = "^2.4.0"
omegaconf = "^2.3.0"
wandb = "^0.16.3"
imageio = {extras = ["ffmpeg"], version = "^2.34.0"}
gdown = "^5.1.0"
hydra-core = "^1.3.2"
einops = "^0.8.0"
pymunk = "^6.6.0"
zarr = "^2.17.0"
numba = "^0.59.0"
termcolor = ">=2.4.0"
omegaconf = ">=2.3.0"
wandb = ">=0.16.3"
imageio = {extras = ["ffmpeg"], version = ">=2.34.0"}
gdown = ">=5.1.0"
hydra-core = ">=1.3.2"
einops = ">=0.8.0"
pymunk = ">=6.6.0"
zarr = ">=2.17.0"
numba = ">=0.59.0"
torch = "^2.2.1"
opencv-python = "^4.9.0.80"
opencv-python = ">=4.9.0"
diffusers = "^0.27.2"
torchvision = "^0.18.0"
h5py = "^3.10.0"
huggingface-hub = "^0.21.4"
torchvision = ">=0.18.0"
h5py = ">=3.10.0"
huggingface-hub = ">=0.21.4"
robomimic = "0.2.0"
gymnasium = "^0.29.1"
cmake = "^3.29.0.1"
gym-pusht = { version = "^0.1.1", optional = true}
gym-xarm = { version = "^0.1.0", optional = true}
gym-aloha = { version = "^0.1.0", optional = true}
pre-commit = {version = "^3.7.0", optional = true}
debugpy = {version = "^1.8.1", optional = true}
pytest = {version = "^8.1.0", optional = true}
pytest-cov = {version = "^5.0.0", optional = true}
gymnasium = ">=0.29.1"
cmake = ">=3.29.0.1"
gym-pusht = { version = ">=0.1.3", optional = true}
gym-xarm = { version = ">=0.1.1", optional = true}
gym-aloha = { version = ">=0.1.1", optional = true}
pre-commit = {version = ">=3.7.0", optional = true}
debugpy = {version = ">=1.8.1", optional = true}
pytest = {version = ">=8.1.0", optional = true}
pytest-cov = {version = ">=5.0.0", optional = true}
datasets = "^2.19.0"
imagecodecs = { version = "^2024.1.1", optional = true }
pyav = "^12.0.5"
moviepy = "^1.0.3"
rerun-sdk = "^0.15.1"
imagecodecs = { version = ">=2024.1.1", optional = true }
pyav = ">=12.0.5"
moviepy = ">=1.0.3"
rerun-sdk = ">=0.15.1"
[tool.poetry.extras]
@ -104,5 +104,5 @@ ignore-init-module-imports = true
[build-system]
requires = ["poetry-core>=1.5.0"]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@ -3,6 +3,8 @@ import subprocess
import sys
from pathlib import Path
from tests.utils import require_package
def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> str:
for f, r in finds_and_replaces:
@ -21,6 +23,7 @@ def test_example_1():
assert Path("outputs/examples/1_load_lerobot_dataset/episode_0.mp4").exists()
@require_package("gym_pusht")
def test_examples_3_and_2():
"""
Train a model with example 3, check the outputs.

View File

@ -236,7 +236,7 @@ def test_normalize(insert_temporal_dim):
@pytest.mark.parametrize(
"env_name, policy_name, extra_overrides",
[
# ("xarm", "tdmpc", ["policy.n_action_repeats=2"]),
("xarm", "tdmpc", []),
(
"pusht",
"diffusion",

38
tests/test_utils.py Normal file
View File

@ -0,0 +1,38 @@
import random
from typing import Callable
import numpy as np
import pytest
import torch
from lerobot.common.utils.utils import seeded_context, set_global_seed
@pytest.mark.parametrize(
"rand_fn",
[
random.random,
np.random.random,
lambda: torch.rand(1).item(),
]
+ [lambda: torch.rand(1, device="cuda")]
if torch.cuda.is_available()
else [],
)
def test_seeding(rand_fn: Callable[[], int]):
set_global_seed(0)
a = rand_fn()
with seeded_context(1337):
c = rand_fn()
b = rand_fn()
set_global_seed(0)
a_ = rand_fn()
b_ = rand_fn()
# Check that `set_global_seed` lets us reproduce a and b.
assert a_ == a
# Additionally, check that the `seeded_context` didn't interrupt the global RNG.
assert b_ == b
set_global_seed(1337)
c_ = rand_fn()
# Check that `seeded_context` and `global_seed` give the same reproducibility.
assert c_ == c

View File

@ -1,4 +1,5 @@
import platform
from functools import wraps
import pytest
import torch
@ -61,7 +62,6 @@ def require_env(func):
Decorator that skips the test if the required environment package is not installed.
As it need 'env_name' in args, it also checks whether it is provided as an argument.
"""
from functools import wraps
@wraps(func)
def wrapper(*args, **kwargs):
@ -82,3 +82,20 @@ def require_env(func):
return func(*args, **kwargs)
return wrapper
def require_package(package_name):
"""
Decorator that skips the test if the specified package is not installed.
"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
if not is_package_available(package_name):
pytest.skip(f"{package_name} not installed")
return func(*args, **kwargs)
return wrapper
return decorator