Refactor env queue, Training diffusion works (Still not converging)
This commit is contained in:
parent
fddd9f0311
commit
cfc304e870
|
@ -69,7 +69,7 @@ def make_offline_buffer(cfg, sampler=None):
|
||||||
sampler=sampler,
|
sampler=sampler,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
pin_memory=pin_memory,
|
pin_memory=pin_memory,
|
||||||
prefetch=prefetch,
|
prefetch=prefetch if isinstance(prefetch, int) else None,
|
||||||
)
|
)
|
||||||
elif cfg.env.name == "pusht":
|
elif cfg.env.name == "pusht":
|
||||||
offline_buffer = PushtExperienceReplay(
|
offline_buffer = PushtExperienceReplay(
|
||||||
|
@ -79,7 +79,7 @@ def make_offline_buffer(cfg, sampler=None):
|
||||||
sampler=sampler,
|
sampler=sampler,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
pin_memory=pin_memory,
|
pin_memory=pin_memory,
|
||||||
prefetch=prefetch,
|
prefetch=prefetch if isinstance(prefetch, int) else None,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(cfg.env.name)
|
raise ValueError(cfg.env.name)
|
||||||
|
|
|
@ -143,13 +143,24 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
|
||||||
in_keys=[
|
in_keys=[
|
||||||
# ("observation", "image"),
|
# ("observation", "image"),
|
||||||
("observation", "state"),
|
("observation", "state"),
|
||||||
|
# TODO(rcadene): for tdmpc, we might want image and state
|
||||||
# ("next", "observation", "image"),
|
# ("next", "observation", "image"),
|
||||||
("next", "observation", "state"),
|
# ("next", "observation", "state"),
|
||||||
("action"),
|
("action"),
|
||||||
],
|
],
|
||||||
mode="min_max",
|
mode="min_max",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, min_max_spec
|
||||||
|
transform.stats["observation", "state", "min"] = torch.tensor(
|
||||||
|
[13.456424, 32.938293], dtype=torch.float32
|
||||||
|
)
|
||||||
|
transform.stats["observation", "state", "max"] = torch.tensor(
|
||||||
|
[496.14618, 510.9579], dtype=torch.float32
|
||||||
|
)
|
||||||
|
transform.stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
|
||||||
|
transform.stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
|
||||||
|
|
||||||
if writer is None:
|
if writer is None:
|
||||||
writer = ImmutableDatasetWriter()
|
writer = ImmutableDatasetWriter()
|
||||||
if collate_fn is None:
|
if collate_fn is None:
|
||||||
|
|
|
@ -7,6 +7,8 @@ def make_env(cfg, transform=None):
|
||||||
"from_pixels": cfg.env.from_pixels,
|
"from_pixels": cfg.env.from_pixels,
|
||||||
"pixels_only": cfg.env.pixels_only,
|
"pixels_only": cfg.env.pixels_only,
|
||||||
"image_size": cfg.env.image_size,
|
"image_size": cfg.env.image_size,
|
||||||
|
# TODO(rcadene): do we want a specific eval_env_seed?
|
||||||
|
"seed": cfg.seed,
|
||||||
}
|
}
|
||||||
|
|
||||||
if cfg.env.name == "simxarm":
|
if cfg.env.name == "simxarm":
|
||||||
|
@ -17,6 +19,8 @@ def make_env(cfg, transform=None):
|
||||||
elif cfg.env.name == "pusht":
|
elif cfg.env.name == "pusht":
|
||||||
from lerobot.common.envs.pusht import PushtEnv
|
from lerobot.common.envs.pusht import PushtEnv
|
||||||
|
|
||||||
|
# assert kwargs["seed"] > 200, "Seed 0-200 are used for the demonstration dataset, so we don't want to seed the eval env with this range."
|
||||||
|
|
||||||
clsfunc = PushtEnv
|
clsfunc = PushtEnv
|
||||||
else:
|
else:
|
||||||
raise ValueError(cfg.env.name)
|
raise ValueError(cfg.env.name)
|
||||||
|
|
|
@ -101,14 +101,18 @@ class PushtEnv(EnvBase):
|
||||||
obs = self._format_raw_obs(raw_obs)
|
obs = self._format_raw_obs(raw_obs)
|
||||||
|
|
||||||
if self.num_prev_obs > 0:
|
if self.num_prev_obs > 0:
|
||||||
# remove all previous observations
|
stacked_obs = {}
|
||||||
if "image" in obs:
|
if "image" in obs:
|
||||||
self._prev_obs_image_queue.clear()
|
self._prev_obs_image_queue = deque(
|
||||||
|
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||||
|
)
|
||||||
|
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||||
if "state" in obs:
|
if "state" in obs:
|
||||||
self._prev_obs_state_queue.clear()
|
self._prev_obs_state_queue = deque(
|
||||||
|
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||||
# copy the current observation n times
|
)
|
||||||
obs = self._stack_prev_obs(obs)
|
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||||
|
obs = stacked_obs
|
||||||
|
|
||||||
td = TensorDict(
|
td = TensorDict(
|
||||||
{
|
{
|
||||||
|
@ -121,40 +125,6 @@ class PushtEnv(EnvBase):
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
return td
|
return td
|
||||||
|
|
||||||
def _stack_prev_obs(self, obs):
|
|
||||||
"""When the queue is empty, copy the current observation n times."""
|
|
||||||
assert self.num_prev_obs > 0
|
|
||||||
|
|
||||||
def stack_update_queue(prev_obs_queue, obs, num_prev_obs):
|
|
||||||
# get n most recent observations
|
|
||||||
prev_obs = list(prev_obs_queue)[-num_prev_obs:]
|
|
||||||
|
|
||||||
# if not enough observations, copy the oldest observation until we obtain n observations
|
|
||||||
if len(prev_obs) == 0:
|
|
||||||
prev_obs = [obs] * num_prev_obs # queue is empty when env reset
|
|
||||||
elif len(prev_obs) < num_prev_obs:
|
|
||||||
prev_obs = [prev_obs[0] for _ in range(num_prev_obs - len(prev_obs))] + prev_obs
|
|
||||||
|
|
||||||
# stack n most recent observations with the current observation
|
|
||||||
stacked_obs = torch.stack(prev_obs + [obs], dim=0)
|
|
||||||
|
|
||||||
# add current observation to the queue
|
|
||||||
# automatically remove oldest observation when queue is full
|
|
||||||
prev_obs_queue.appendleft(obs)
|
|
||||||
|
|
||||||
return stacked_obs
|
|
||||||
|
|
||||||
stacked_obs = {}
|
|
||||||
if "image" in obs:
|
|
||||||
stacked_obs["image"] = stack_update_queue(
|
|
||||||
self._prev_obs_image_queue, obs["image"], self.num_prev_obs
|
|
||||||
)
|
|
||||||
if "state" in obs:
|
|
||||||
stacked_obs["state"] = stack_update_queue(
|
|
||||||
self._prev_obs_state_queue, obs["state"], self.num_prev_obs
|
|
||||||
)
|
|
||||||
return stacked_obs
|
|
||||||
|
|
||||||
def _step(self, tensordict: TensorDict):
|
def _step(self, tensordict: TensorDict):
|
||||||
td = tensordict
|
td = tensordict
|
||||||
action = td["action"].numpy()
|
action = td["action"].numpy()
|
||||||
|
@ -176,7 +146,14 @@ class PushtEnv(EnvBase):
|
||||||
obs = self._format_raw_obs(raw_obs)
|
obs = self._format_raw_obs(raw_obs)
|
||||||
|
|
||||||
if self.num_prev_obs > 0:
|
if self.num_prev_obs > 0:
|
||||||
obs = self._stack_prev_obs(obs)
|
stacked_obs = {}
|
||||||
|
if "image" in obs:
|
||||||
|
self._prev_obs_image_queue.append(obs["image"])
|
||||||
|
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||||
|
if "state" in obs:
|
||||||
|
self._prev_obs_state_queue.append(obs["state"])
|
||||||
|
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||||
|
obs = stacked_obs
|
||||||
|
|
||||||
td = TensorDict(
|
td = TensorDict(
|
||||||
{
|
{
|
||||||
|
|
|
@ -1,51 +1,11 @@
|
||||||
import contextlib
|
import logging
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from termcolor import colored
|
from termcolor import colored
|
||||||
|
|
||||||
|
|
||||||
def make_dir(dir_path):
|
|
||||||
"""Create directory if it does not already exist."""
|
|
||||||
with contextlib.suppress(OSError):
|
|
||||||
dir_path.mkdir(parents=True, exist_ok=True)
|
|
||||||
return dir_path
|
|
||||||
|
|
||||||
|
|
||||||
def print_run(cfg, reward=None):
|
|
||||||
"""Pretty-printing of run information. Call at start of training."""
|
|
||||||
prefix, color, attrs = " ", "green", ["bold"]
|
|
||||||
|
|
||||||
def limstr(s, maxlen=32):
|
|
||||||
return str(s[:maxlen]) + "..." if len(str(s)) > maxlen else s
|
|
||||||
|
|
||||||
def pprint(k, v):
|
|
||||||
print(
|
|
||||||
prefix + colored(f'{k.capitalize() + ":":<16}', color, attrs=attrs),
|
|
||||||
limstr(v),
|
|
||||||
)
|
|
||||||
|
|
||||||
kvs = [
|
|
||||||
("task", cfg.env.task),
|
|
||||||
("offline_steps", f"{cfg.offline_steps}"),
|
|
||||||
("online_steps", f"{cfg.online_steps}"),
|
|
||||||
("action_repeat", f"{cfg.env.action_repeat}"),
|
|
||||||
# ('observations', 'x'.join([str(s) for s in cfg.obs_shape])),
|
|
||||||
# ('actions', cfg.action_dim),
|
|
||||||
# ('experiment', cfg.exp_name),
|
|
||||||
]
|
|
||||||
if reward is not None:
|
|
||||||
kvs.append(("episode reward", colored(str(int(reward)), "white", attrs=["bold"])))
|
|
||||||
w = np.max([len(limstr(str(kv[1]))) for kv in kvs]) + 21
|
|
||||||
div = "-" * w
|
|
||||||
print(div)
|
|
||||||
for k, v in kvs:
|
|
||||||
pprint(k, v)
|
|
||||||
print(div)
|
|
||||||
|
|
||||||
|
|
||||||
def cfg_to_group(cfg, return_list=False):
|
def cfg_to_group(cfg, return_list=False):
|
||||||
"""Return a wandb-safe group name for logging. Optionally returns group name as list."""
|
"""Return a wandb-safe group name for logging. Optionally returns group name as list."""
|
||||||
# lst = [cfg.task, cfg.modality, re.sub("[^0-9a-zA-Z]+", "-", cfg.exp_name)]
|
# lst = [cfg.task, cfg.modality, re.sub("[^0-9a-zA-Z]+", "-", cfg.exp_name)]
|
||||||
|
@ -71,13 +31,12 @@ class Logger:
|
||||||
self._seed = cfg.seed
|
self._seed = cfg.seed
|
||||||
self._cfg = cfg
|
self._cfg = cfg
|
||||||
self._eval = []
|
self._eval = []
|
||||||
print_run(cfg)
|
|
||||||
project = cfg.get("wandb", {}).get("project")
|
project = cfg.get("wandb", {}).get("project")
|
||||||
entity = cfg.get("wandb", {}).get("entity")
|
entity = cfg.get("wandb", {}).get("entity")
|
||||||
enable_wandb = cfg.get("wandb", {}).get("enable", False)
|
enable_wandb = cfg.get("wandb", {}).get("enable", False)
|
||||||
run_offline = not enable_wandb or not project or not entity
|
run_offline = not enable_wandb or not project or not entity
|
||||||
if run_offline:
|
if run_offline:
|
||||||
print(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
|
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
|
||||||
self._wandb = None
|
self._wandb = None
|
||||||
else:
|
else:
|
||||||
os.environ["WANDB_SILENT"] = "true"
|
os.environ["WANDB_SILENT"] = "true"
|
||||||
|
@ -134,7 +93,6 @@ class Logger:
|
||||||
self.save_buffer(buffer, identifier="buffer")
|
self.save_buffer(buffer, identifier="buffer")
|
||||||
if self._wandb:
|
if self._wandb:
|
||||||
self._wandb.finish()
|
self._wandb.finish()
|
||||||
print_run(self._cfg, self._eval[-1][-1])
|
|
||||||
|
|
||||||
def log_dict(self, d, step, mode="train"):
|
def log_dict(self, d, step, mode="train"):
|
||||||
assert mode in {"train", "eval"}
|
assert mode in {"train", "eval"}
|
||||||
|
|
|
@ -4,10 +4,8 @@ import time
|
||||||
import hydra
|
import hydra
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
|
||||||
|
|
||||||
from diffusion_policy.model.common.lr_scheduler import get_scheduler
|
from diffusion_policy.model.common.lr_scheduler import get_scheduler
|
||||||
from diffusion_policy.model.vision.model_getter import get_resnet
|
|
||||||
|
|
||||||
from .diffusion_unet_image_policy import DiffusionUnetImagePolicy
|
from .diffusion_unet_image_policy import DiffusionUnetImagePolicy
|
||||||
from .multi_image_obs_encoder import MultiImageObsEncoder
|
from .multi_image_obs_encoder import MultiImageObsEncoder
|
||||||
|
@ -39,8 +37,8 @@ class DiffusionPolicy(nn.Module):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.cfg = cfg
|
self.cfg = cfg
|
||||||
|
|
||||||
noise_scheduler = DDPMScheduler(**cfg_noise_scheduler)
|
noise_scheduler = hydra.utils.instantiate(cfg_noise_scheduler)
|
||||||
rgb_model = get_resnet(**cfg_rgb_model)
|
rgb_model = hydra.utils.instantiate(cfg_rgb_model)
|
||||||
obs_encoder = MultiImageObsEncoder(
|
obs_encoder = MultiImageObsEncoder(
|
||||||
rgb_model=rgb_model,
|
rgb_model=rgb_model,
|
||||||
**cfg_obs_encoder,
|
**cfg_obs_encoder,
|
||||||
|
@ -127,16 +125,36 @@ class DiffusionPolicy(nn.Module):
|
||||||
# (t h) ... -> t h ...
|
# (t h) ... -> t h ...
|
||||||
batch = batch.reshape(num_slices, horizon) # .transpose(1, 0).contiguous()
|
batch = batch.reshape(num_slices, horizon) # .transpose(1, 0).contiguous()
|
||||||
|
|
||||||
|
# |-1|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14| timestamps: 16
|
||||||
|
# |o|o| observations: 2
|
||||||
|
# | |a|a|a|a|a|a|a|a| actions executed: 8
|
||||||
|
# |p|p|p|p|p|p|p|p|p|p|p| p| p| p| p| p| actions predicted: 16
|
||||||
|
# note: we predict the action needed to go from t=-1 to t=0 similarly to an inverse kinematic model
|
||||||
|
|
||||||
|
image = batch["observation", "image"]
|
||||||
|
state = batch["observation", "state"]
|
||||||
|
action = batch["action"]
|
||||||
|
assert image.shape[1] == horizon
|
||||||
|
assert state.shape[1] == horizon
|
||||||
|
assert action.shape[1] == horizon
|
||||||
|
|
||||||
|
if not (horizon == 16 and self.cfg.n_obs_steps == 2):
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
# keep first 2 observations of the slice corresponding to t=[-1,0]
|
||||||
|
image = image[:, : self.cfg.n_obs_steps]
|
||||||
|
state = state[:, : self.cfg.n_obs_steps]
|
||||||
|
|
||||||
out = {
|
out = {
|
||||||
"obs": {
|
"obs": {
|
||||||
"image": batch["observation", "image"].to(self.device, non_blocking=True),
|
"image": image.to(self.device, non_blocking=True),
|
||||||
"agent_pos": batch["observation", "state"].to(self.device, non_blocking=True),
|
"agent_pos": state.to(self.device, non_blocking=True),
|
||||||
},
|
},
|
||||||
"action": batch["action"].to(self.device, non_blocking=True),
|
"action": action.to(self.device, non_blocking=True),
|
||||||
}
|
}
|
||||||
return out
|
return out
|
||||||
|
|
||||||
batch = replay_buffer.sample(batch_size) if self.cfg.balanced_sampling else replay_buffer.sample()
|
batch = replay_buffer.sample(batch_size)
|
||||||
batch = process_batch(batch, self.cfg.horizon, num_slices)
|
batch = process_batch(batch, self.cfg.horizon, num_slices)
|
||||||
|
|
||||||
data_s = time.time() - start_time
|
data_s = time.time() - start_time
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
defaults:
|
defaults:
|
||||||
- _self_
|
- _self_
|
||||||
- env: simxarm
|
- env: pusht
|
||||||
- policy: tdmpc
|
- policy: diffusion
|
||||||
|
|
||||||
hydra:
|
hydra:
|
||||||
run:
|
run:
|
||||||
|
@ -22,6 +22,7 @@ save_buffer: false
|
||||||
train_steps: ???
|
train_steps: ???
|
||||||
fps: ???
|
fps: ???
|
||||||
|
|
||||||
|
n_action_steps: ???
|
||||||
env: ???
|
env: ???
|
||||||
|
|
||||||
policy: ???
|
policy: ???
|
||||||
|
|
|
@ -21,7 +21,7 @@ past_action_visible: False
|
||||||
keypoint_visible_rate: 1.0
|
keypoint_visible_rate: 1.0
|
||||||
obs_as_global_cond: True
|
obs_as_global_cond: True
|
||||||
|
|
||||||
eval_episodes: 50
|
eval_episodes: 1
|
||||||
eval_freq: 10000
|
eval_freq: 10000
|
||||||
save_freq: 100000
|
save_freq: 100000
|
||||||
log_freq: 250
|
log_freq: 250
|
||||||
|
@ -40,8 +40,8 @@ policy:
|
||||||
num_inference_steps: 100
|
num_inference_steps: 100
|
||||||
obs_as_global_cond: ${obs_as_global_cond}
|
obs_as_global_cond: ${obs_as_global_cond}
|
||||||
# crop_shape: null
|
# crop_shape: null
|
||||||
diffusion_step_embed_dim: 128
|
diffusion_step_embed_dim: 256 # before 128
|
||||||
down_dims: [512, 1024, 2048]
|
down_dims: [256, 512, 1024] # before [512, 1024, 2048]
|
||||||
kernel_size: 5
|
kernel_size: 5
|
||||||
n_groups: 8
|
n_groups: 8
|
||||||
cond_predict_scale: True
|
cond_predict_scale: True
|
||||||
|
@ -62,7 +62,7 @@ policy:
|
||||||
grad_clip_norm: 0
|
grad_clip_norm: 0
|
||||||
|
|
||||||
noise_scheduler:
|
noise_scheduler:
|
||||||
# _target_: diffusers.schedulers.scheduling_ddpm.DDPMScheduler
|
_target_: diffusers.schedulers.scheduling_ddpm.DDPMScheduler
|
||||||
num_train_timesteps: 100
|
num_train_timesteps: 100
|
||||||
beta_start: 0.0001
|
beta_start: 0.0001
|
||||||
beta_end: 0.02
|
beta_end: 0.02
|
||||||
|
@ -74,16 +74,16 @@ noise_scheduler:
|
||||||
obs_encoder:
|
obs_encoder:
|
||||||
# _target_: diffusion_policy.model.vision.multi_image_obs_encoder.MultiImageObsEncoder
|
# _target_: diffusion_policy.model.vision.multi_image_obs_encoder.MultiImageObsEncoder
|
||||||
shape_meta: ${shape_meta}
|
shape_meta: ${shape_meta}
|
||||||
resize_shape: null
|
# resize_shape: null
|
||||||
crop_shape: [76, 76]
|
# crop_shape: [76, 76]
|
||||||
# constant center crop
|
# constant center crop
|
||||||
random_crop: True
|
# random_crop: True
|
||||||
use_group_norm: True
|
use_group_norm: True
|
||||||
share_rgb_model: False
|
share_rgb_model: False
|
||||||
imagenet_norm: False # TODO(rcadene): was set to True
|
imagenet_norm: True
|
||||||
|
|
||||||
rgb_model:
|
rgb_model:
|
||||||
#_target_: diffusion_policy.model.vision.model_getter.get_resnet
|
_target_: diffusion_policy.model.vision.model_getter.get_resnet
|
||||||
name: resnet18
|
name: resnet18
|
||||||
weights: null
|
weights: null
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,7 @@
|
||||||
# @package _global_
|
# @package _global_
|
||||||
|
|
||||||
|
n_action_steps: 1
|
||||||
|
|
||||||
policy:
|
policy:
|
||||||
name: tdmpc
|
name: tdmpc
|
||||||
|
|
||||||
|
|
|
@ -137,7 +137,7 @@ def eval(cfg: dict, out_dir=None):
|
||||||
save_video=True,
|
save_video=True,
|
||||||
video_dir=Path(out_dir) / "eval",
|
video_dir=Path(out_dir) / "eval",
|
||||||
fps=cfg.env.fps,
|
fps=cfg.env.fps,
|
||||||
max_steps=cfg.env.episode_length,
|
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||||
num_episodes=cfg.eval_episodes,
|
num_episodes=cfg.eval_episodes,
|
||||||
)
|
)
|
||||||
print(metrics)
|
print(metrics)
|
||||||
|
|
|
@ -119,7 +119,6 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||||
torch.backends.cudnn.benchmark = True
|
torch.backends.cudnn.benchmark = True
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
set_seed(cfg.seed)
|
set_seed(cfg.seed)
|
||||||
logging.info(colored("Work dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
|
|
||||||
|
|
||||||
logging.info("make_offline_buffer")
|
logging.info("make_offline_buffer")
|
||||||
offline_buffer = make_offline_buffer(cfg)
|
offline_buffer = make_offline_buffer(cfg)
|
||||||
|
@ -149,6 +148,9 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||||
logging.info("make_policy")
|
logging.info("make_policy")
|
||||||
policy = make_policy(cfg)
|
policy = make_policy(cfg)
|
||||||
|
|
||||||
|
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
|
||||||
|
num_total_params = sum(p.numel() for p in policy.parameters())
|
||||||
|
|
||||||
td_policy = TensorDictModule(
|
td_policy = TensorDictModule(
|
||||||
policy,
|
policy,
|
||||||
in_keys=["observation", "step_count"],
|
in_keys=["observation", "step_count"],
|
||||||
|
@ -158,6 +160,16 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||||
# log metrics to terminal and wandb
|
# log metrics to terminal and wandb
|
||||||
logger = Logger(out_dir, job_name, cfg)
|
logger = Logger(out_dir, job_name, cfg)
|
||||||
|
|
||||||
|
logging.info(colored("Work dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
|
||||||
|
logging.info(f"{cfg.env.task=}")
|
||||||
|
logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})")
|
||||||
|
logging.info(f"{cfg.online_steps=}")
|
||||||
|
logging.info(f"{cfg.env.action_repeat=}")
|
||||||
|
logging.info(f"{offline_buffer.num_samples=} ({format_big_number(offline_buffer.num_samples)})")
|
||||||
|
logging.info(f"{offline_buffer.num_episodes=}")
|
||||||
|
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
|
||||||
|
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
|
||||||
|
|
||||||
step = 0 # number of policy update
|
step = 0 # number of policy update
|
||||||
|
|
||||||
is_offline = True
|
is_offline = True
|
||||||
|
@ -175,6 +187,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||||
env,
|
env,
|
||||||
td_policy,
|
td_policy,
|
||||||
num_episodes=cfg.eval_episodes,
|
num_episodes=cfg.eval_episodes,
|
||||||
|
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||||
return_first_video=True,
|
return_first_video=True,
|
||||||
)
|
)
|
||||||
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
|
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
|
||||||
|
@ -199,11 +212,11 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||||
# TODO: add configurable number of rollout? (default=1)
|
# TODO: add configurable number of rollout? (default=1)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
rollout = env.rollout(
|
rollout = env.rollout(
|
||||||
max_steps=cfg.env.episode_length,
|
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||||
policy=td_policy,
|
policy=td_policy,
|
||||||
auto_cast_to_device=True,
|
auto_cast_to_device=True,
|
||||||
)
|
)
|
||||||
assert len(rollout) <= cfg.env.episode_length
|
assert len(rollout) <= cfg.env.episode_length // cfg.n_action_steps
|
||||||
# set same episode index for all time steps contained in this rollout
|
# set same episode index for all time steps contained in this rollout
|
||||||
rollout["episode"] = torch.tensor([env_step] * len(rollout), dtype=torch.int)
|
rollout["episode"] = torch.tensor([env_step] * len(rollout), dtype=torch.int)
|
||||||
online_buffer.extend(rollout)
|
online_buffer.extend(rollout)
|
||||||
|
@ -235,6 +248,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||||
env,
|
env,
|
||||||
td_policy,
|
td_policy,
|
||||||
num_episodes=cfg.eval_episodes,
|
num_episodes=cfg.eval_episodes,
|
||||||
|
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||||
return_first_video=True,
|
return_first_video=True,
|
||||||
)
|
)
|
||||||
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
|
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
|
||||||
|
|
Loading…
Reference in New Issue