Include tests in pre-commit formatting
This commit is contained in:
parent
37efcea3eb
commit
d407ce21aa
|
@ -1,4 +1,4 @@
|
||||||
exclude: ^(data/|tests/)
|
exclude: ^(data/|tests/data)
|
||||||
default_language_version:
|
default_language_version:
|
||||||
python: python3.10
|
python: python3.10
|
||||||
repos:
|
repos:
|
||||||
|
|
|
@ -1,9 +1,9 @@
|
||||||
import importlib
|
import importlib
|
||||||
import pytest
|
|
||||||
import lerobot
|
|
||||||
import gymnasium as gym
|
|
||||||
|
|
||||||
from lerobot.common.utils.import_utils import is_package_available
|
import gymnasium as gym
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import lerobot
|
||||||
from lerobot.common.policies.act.modeling_act import ActionChunkingTransformerPolicy
|
from lerobot.common.policies.act.modeling_act import ActionChunkingTransformerPolicy
|
||||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||||
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
|
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
|
||||||
|
@ -21,7 +21,7 @@ def test_available_env_task(env_name: str, task_name: list):
|
||||||
package_name = f"gym_{env_name}"
|
package_name = f"gym_{env_name}"
|
||||||
importlib.import_module(package_name)
|
importlib.import_module(package_name)
|
||||||
gym_handle = f"{package_name}/{task_name}"
|
gym_handle = f"{package_name}/{task_name}"
|
||||||
assert gym_handle in gym.envs.registry.keys(), gym_handle
|
assert gym_handle in gym.envs.registry, gym_handle
|
||||||
|
|
||||||
|
|
||||||
def test_available_policies():
|
def test_available_policies():
|
||||||
|
|
|
@ -1,24 +1,35 @@
|
||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import einops
|
import einops
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
from datasets import Dataset
|
||||||
|
|
||||||
import lerobot
|
import lerobot
|
||||||
from lerobot.common.datasets.utils import compute_stats, get_stats_einops_patterns, load_previous_and_future_frames
|
from lerobot.common.datasets.factory import make_dataset
|
||||||
|
from lerobot.common.datasets.utils import (
|
||||||
|
compute_stats,
|
||||||
|
get_stats_einops_patterns,
|
||||||
|
load_previous_and_future_frames,
|
||||||
|
)
|
||||||
from lerobot.common.transforms import Prod
|
from lerobot.common.transforms import Prod
|
||||||
from lerobot.common.utils.utils import init_hydra_config
|
from lerobot.common.utils.utils import init_hydra_config
|
||||||
import logging
|
|
||||||
from lerobot.common.datasets.factory import make_dataset
|
from .utils import DEFAULT_CONFIG_PATH, DEVICE
|
||||||
from datasets import Dataset
|
|
||||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("env_name, dataset_id, policy_name", lerobot.env_dataset_policy_triplets)
|
@pytest.mark.parametrize("env_name, dataset_id, policy_name", lerobot.env_dataset_policy_triplets)
|
||||||
def test_factory(env_name, dataset_id, policy_name):
|
def test_factory(env_name, dataset_id, policy_name):
|
||||||
cfg = init_hydra_config(
|
cfg = init_hydra_config(
|
||||||
DEFAULT_CONFIG_PATH,
|
DEFAULT_CONFIG_PATH,
|
||||||
overrides=[f"env={env_name}", f"dataset_id={dataset_id}", f"policy={policy_name}", f"device={DEVICE}"]
|
overrides=[
|
||||||
|
f"env={env_name}",
|
||||||
|
f"dataset_id={dataset_id}",
|
||||||
|
f"policy={policy_name}",
|
||||||
|
f"device={DEVICE}",
|
||||||
|
],
|
||||||
)
|
)
|
||||||
dataset = make_dataset(cfg)
|
dataset = make_dataset(cfg)
|
||||||
delta_timestamps = dataset.delta_timestamps
|
delta_timestamps = dataset.delta_timestamps
|
||||||
|
@ -71,7 +82,6 @@ def test_factory(env_name, dataset_id, policy_name):
|
||||||
# test c,h,w
|
# test c,h,w
|
||||||
assert item[key].shape[0] == 3, f"{key}"
|
assert item[key].shape[0] == 3, f"{key}"
|
||||||
|
|
||||||
|
|
||||||
if delta_timestamps is not None:
|
if delta_timestamps is not None:
|
||||||
# test missing keys in delta_timestamps
|
# test missing keys in delta_timestamps
|
||||||
for key in delta_timestamps:
|
for key in delta_timestamps:
|
||||||
|
@ -86,14 +96,14 @@ def test_compute_stats_on_xarm():
|
||||||
"""
|
"""
|
||||||
from lerobot.common.datasets.xarm import XarmDataset
|
from lerobot.common.datasets.xarm import XarmDataset
|
||||||
|
|
||||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
data_dir = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||||
|
|
||||||
# get transform to convert images from uint8 [0,255] to float32 [0,1]
|
# get transform to convert images from uint8 [0,255] to float32 [0,1]
|
||||||
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
|
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
|
||||||
|
|
||||||
dataset = XarmDataset(
|
dataset = XarmDataset(
|
||||||
dataset_id="xarm_lift_medium",
|
dataset_id="xarm_lift_medium",
|
||||||
root=DATA_DIR,
|
root=data_dir,
|
||||||
transform=transform,
|
transform=transform,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -119,7 +129,9 @@ def test_compute_stats_on_xarm():
|
||||||
for k, pattern in stats_patterns.items():
|
for k, pattern in stats_patterns.items():
|
||||||
expected_stats[k] = {}
|
expected_stats[k] = {}
|
||||||
expected_stats[k]["mean"] = einops.reduce(hf_dataset[k], pattern, "mean")
|
expected_stats[k]["mean"] = einops.reduce(hf_dataset[k], pattern, "mean")
|
||||||
expected_stats[k]["std"] = torch.sqrt(einops.reduce((hf_dataset[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean"))
|
expected_stats[k]["std"] = torch.sqrt(
|
||||||
|
einops.reduce((hf_dataset[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
|
||||||
|
)
|
||||||
expected_stats[k]["min"] = einops.reduce(hf_dataset[k], pattern, "min")
|
expected_stats[k]["min"] = einops.reduce(hf_dataset[k], pattern, "min")
|
||||||
expected_stats[k]["max"] = einops.reduce(hf_dataset[k], pattern, "max")
|
expected_stats[k]["max"] = einops.reduce(hf_dataset[k], pattern, "max")
|
||||||
|
|
||||||
|
@ -144,12 +156,14 @@ def test_compute_stats_on_xarm():
|
||||||
|
|
||||||
|
|
||||||
def test_load_previous_and_future_frames_within_tolerance():
|
def test_load_previous_and_future_frames_within_tolerance():
|
||||||
hf_dataset = Dataset.from_dict({
|
hf_dataset = Dataset.from_dict(
|
||||||
|
{
|
||||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||||
"index": [0, 1, 2, 3, 4],
|
"index": [0, 1, 2, 3, 4],
|
||||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||||
})
|
}
|
||||||
|
)
|
||||||
hf_dataset = hf_dataset.with_format("torch")
|
hf_dataset = hf_dataset.with_format("torch")
|
||||||
item = hf_dataset[2]
|
item = hf_dataset[2]
|
||||||
delta_timestamps = {"index": [-0.2, 0, 0.139]}
|
delta_timestamps = {"index": [-0.2, 0, 0.139]}
|
||||||
|
@ -161,12 +175,14 @@ def test_load_previous_and_future_frames_within_tolerance():
|
||||||
|
|
||||||
|
|
||||||
def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range():
|
def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range():
|
||||||
hf_dataset = Dataset.from_dict({
|
hf_dataset = Dataset.from_dict(
|
||||||
|
{
|
||||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||||
"index": [0, 1, 2, 3, 4],
|
"index": [0, 1, 2, 3, 4],
|
||||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||||
})
|
}
|
||||||
|
)
|
||||||
hf_dataset = hf_dataset.with_format("torch")
|
hf_dataset = hf_dataset.with_format("torch")
|
||||||
item = hf_dataset[2]
|
item = hf_dataset[2]
|
||||||
delta_timestamps = {"index": [-0.2, 0, 0.141]}
|
delta_timestamps = {"index": [-0.2, 0, 0.141]}
|
||||||
|
@ -176,12 +192,14 @@ def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range(
|
||||||
|
|
||||||
|
|
||||||
def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range():
|
def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range():
|
||||||
hf_dataset = Dataset.from_dict({
|
hf_dataset = Dataset.from_dict(
|
||||||
|
{
|
||||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||||
"index": [0, 1, 2, 3, 4],
|
"index": [0, 1, 2, 3, 4],
|
||||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||||
})
|
}
|
||||||
|
)
|
||||||
hf_dataset = hf_dataset.with_format("torch")
|
hf_dataset = hf_dataset.with_format("torch")
|
||||||
item = hf_dataset[2]
|
item = hf_dataset[2]
|
||||||
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
|
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
|
||||||
|
@ -189,6 +207,6 @@ def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range
|
||||||
item = load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
item = load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
||||||
data, is_pad = item["index"], item["index_is_pad"]
|
data, is_pad = item["index"], item["index_is_pad"]
|
||||||
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
|
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
|
||||||
assert torch.equal(is_pad, torch.tensor([True, False, False, True, True])), "Padding does not match expected values"
|
assert torch.equal(
|
||||||
|
is_pad, torch.tensor([True, False, False, True, True])
|
||||||
|
), "Padding does not match expected values"
|
||||||
|
|
|
@ -1,18 +1,17 @@
|
||||||
import importlib
|
import importlib
|
||||||
|
|
||||||
|
import gymnasium as gym
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
from lerobot.common.datasets.factory import make_dataset
|
|
||||||
import gymnasium as gym
|
|
||||||
from gymnasium.utils.env_checker import check_env
|
from gymnasium.utils.env_checker import check_env
|
||||||
|
|
||||||
|
import lerobot
|
||||||
|
from lerobot.common.datasets.factory import make_dataset
|
||||||
from lerobot.common.envs.factory import make_env
|
from lerobot.common.envs.factory import make_env
|
||||||
from lerobot.common.utils.import_utils import is_package_available
|
from lerobot.common.envs.utils import preprocess_observation
|
||||||
from lerobot.common.utils.utils import init_hydra_config
|
from lerobot.common.utils.utils import init_hydra_config
|
||||||
|
|
||||||
import lerobot
|
from .utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
|
||||||
from lerobot.common.envs.utils import preprocess_observation
|
|
||||||
|
|
||||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH, require_env
|
|
||||||
|
|
||||||
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]
|
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
from pathlib import Path
|
|
||||||
import subprocess
|
import subprocess
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> str:
|
def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> str:
|
||||||
|
@ -10,7 +10,7 @@ def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> s
|
||||||
|
|
||||||
|
|
||||||
def _run_script(path):
|
def _run_script(path):
|
||||||
subprocess.run(['python', path], check=True)
|
subprocess.run(["python", path], check=True)
|
||||||
|
|
||||||
|
|
||||||
def test_example_1():
|
def test_example_1():
|
||||||
|
@ -33,7 +33,7 @@ def test_examples_4_and_3():
|
||||||
|
|
||||||
path = "examples/4_train_policy.py"
|
path = "examples/4_train_policy.py"
|
||||||
|
|
||||||
with open(path, "r") as file:
|
with open(path) as file:
|
||||||
file_contents = file.read()
|
file_contents = file.read()
|
||||||
|
|
||||||
# Do less steps, use smaller batch, use CPU, and don't complicate things with dataloader workers.
|
# Do less steps, use smaller batch, use CPU, and don't complicate things with dataloader workers.
|
||||||
|
@ -55,7 +55,7 @@ def test_examples_4_and_3():
|
||||||
|
|
||||||
path = "examples/3_evaluate_pretrained_policy.py"
|
path = "examples/3_evaluate_pretrained_policy.py"
|
||||||
|
|
||||||
with open(path, "r") as file:
|
with open(path) as file:
|
||||||
file_contents = file.read()
|
file_contents = file.read()
|
||||||
|
|
||||||
# Do less evals, use CPU, and use the local model.
|
# Do less evals, use CPU, and use the local model.
|
||||||
|
@ -74,4 +74,4 @@ def test_examples_4_and_3():
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
assert Path(f"outputs/train/example_pusht_diffusion").exists()
|
assert Path("outputs/train/example_pusht_diffusion").exists()
|
||||||
|
|
|
@ -1,14 +1,15 @@
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from lerobot.common.datasets.factory import make_dataset
|
||||||
from lerobot.common.datasets.utils import cycle
|
from lerobot.common.datasets.utils import cycle
|
||||||
|
from lerobot.common.envs.factory import make_env
|
||||||
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
|
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
|
||||||
from lerobot.common.policies.factory import make_policy
|
from lerobot.common.policies.factory import make_policy
|
||||||
from lerobot.common.policies.policy_protocol import Policy
|
from lerobot.common.policies.policy_protocol import Policy
|
||||||
from lerobot.common.envs.factory import make_env
|
|
||||||
from lerobot.common.datasets.factory import make_dataset
|
|
||||||
from lerobot.common.utils.utils import init_hydra_config
|
from lerobot.common.utils.utils import init_hydra_config
|
||||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH, require_env
|
|
||||||
|
from .utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
|
||||||
|
|
||||||
|
|
||||||
# TODO(aliberts): refactor using lerobot/__init__.py variables
|
# TODO(aliberts): refactor using lerobot/__init__.py variables
|
||||||
|
|
|
@ -8,6 +8,7 @@ DEFAULT_CONFIG_PATH = "lerobot/configs/default.yaml"
|
||||||
|
|
||||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
|
|
||||||
def require_env(func):
|
def require_env(func):
|
||||||
"""
|
"""
|
||||||
Decorator that skips the test if the required environment package is not installed.
|
Decorator that skips the test if the required environment package is not installed.
|
||||||
|
@ -19,10 +20,10 @@ def require_env(func):
|
||||||
def wrapper(*args, **kwargs):
|
def wrapper(*args, **kwargs):
|
||||||
# Determine if 'env_name' is provided and extract its value
|
# Determine if 'env_name' is provided and extract its value
|
||||||
arg_names = func.__code__.co_varnames[: func.__code__.co_argcount]
|
arg_names = func.__code__.co_varnames[: func.__code__.co_argcount]
|
||||||
if 'env_name' in arg_names:
|
if "env_name" in arg_names:
|
||||||
# Get the index of 'env_name' and retrieve the value from args
|
# Get the index of 'env_name' and retrieve the value from args
|
||||||
index = arg_names.index('env_name')
|
index = arg_names.index("env_name")
|
||||||
env_name = args[index] if len(args) > index else kwargs.get('env_name')
|
env_name = args[index] if len(args) > index else kwargs.get("env_name")
|
||||||
else:
|
else:
|
||||||
raise ValueError("Function does not have 'env_name' as an argument.")
|
raise ValueError("Function does not have 'env_name' as an argument.")
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue