Add keyboard interaction, Add tqdm, Optimize stuff, Fix, Add resuming

This commit is contained in:
Remi Cadene 2024-07-12 19:56:28 +02:00
parent 7a659dbd6b
commit d525e1b0f8
2 changed files with 156 additions and 60 deletions

View File

@ -207,7 +207,8 @@ def encode_video_frames(
ffmpeg_args.append("-y")
ffmpeg_cmd = ["ffmpeg"] + ffmpeg_args + [str(video_path)]
subprocess.run(ffmpeg_cmd, check=True)
# redirect stdin to subprocess.DEVNULL to prevent reading random keyboard inputs from terminal
subprocess.run(ffmpeg_cmd, check=True, stdin=subprocess.DEVNULL)
@dataclass

View File

@ -53,9 +53,15 @@ python lerobot/scripts/control_robot.py record_dataset \
--reset-time-s 10
```
**NOTE**: You can early exit while recording an episode or resetting the environment,
by tapping the right arrow key '->'. This might require a sudo permission
to allow your terminal to monitor keyboard events.
**NOTE**: You can use your keyboard to control data recording flow.
- Tap right arrow key '->' to early exit while recording an episode and go to resseting the environment.
- Tap right arrow key '->' to early exit while resetting the environment and got to recording the next episode.
- Tap left arrow key '<-' to early exit and re-record the current episode.
- Tap escape key 'esc' to stop the data recording.
This might require a sudo permission to allow your terminal to monitor keyboard events.
**NOTE**: You can resume/continue data recording by running the same data recording command twice.
To avoid resuming by deleting the dataset, use `--force-override 1`.
- Train on this dataset with the ACT policy:
```bash
@ -75,6 +81,7 @@ python lerobot/scripts/control_robot.py run_policy \
import argparse
import concurrent.futures
import json
import logging
import os
import shutil
@ -83,10 +90,12 @@ from contextlib import nullcontext
from pathlib import Path
import torch
import tqdm
from omegaconf import DictConfig
from PIL import Image
from pynput import keyboard
# from safetensors.torch import load_file, save_file
from lerobot.common.datasets.compute_stats import compute_stats
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import to_hf_dataset
@ -200,6 +209,8 @@ def record_dataset(
num_episodes=50,
video=True,
run_compute_stats=True,
num_image_writters=4,
force_override=False,
):
# TODO(rcadene): Add option to record logs
@ -210,12 +221,24 @@ def record_dataset(
robot.connect()
local_dir = Path(root) / repo_id
if local_dir.exists():
if local_dir.exists() and force_override:
shutil.rmtree(local_dir)
episodes_dir = local_dir / "episodes"
episodes_dir.mkdir(parents=True, exist_ok=True)
videos_dir = local_dir / "videos"
videos_dir.mkdir(parents=True, exist_ok=True)
# Logic to resume data recording
rec_info_path = episodes_dir / "data_recording_info.json"
if rec_info_path.exists():
with open(rec_info_path) as f:
rec_info = json.load(f)
episode_index = rec_info["last_episode_index"] + 1
else:
episode_index = 0
# Execute a few seconds without recording data, to give times
# to the robot devices to connect and start synchronizing.
timestamp = 0
@ -242,12 +265,25 @@ def record_dataset(
# by tapping the right arrow key '->'. This might require a sudo permission
# to allow your terminal to monitor keyboard events.
exit_early = False
rerecord_episode = False
stop_recording = False
def on_press(key):
nonlocal exit_early
nonlocal exit_early, rerecord_episode, stop_recording
try:
if key == keyboard.Key.right:
print("Right arrow key pressed. Exiting loop...")
exit_early = True
elif key == keyboard.Key.left:
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
rerecord_episode = True
exit_early = True
elif key == keyboard.Key.esc:
print("Escape key pressed. Stopping data recording...")
stop_recording = True
exit_early = True
except Exception as e:
print(f"Error handling key press: {e}")
listener = keyboard.Listener(on_press=on_press)
listener.start()
@ -255,10 +291,10 @@ def record_dataset(
# Save images using threads to reach high fps (30 and more)
# Using `with` to exist smoothly if an execption is raised.
# Using only 4 worker threads to avoid blocking the main thread.
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
futures = []
with concurrent.futures.ThreadPoolExecutor(max_workers=num_image_writters) as executor:
# Start recording all episodes
ep_dicts = []
for episode_index in range(num_episodes):
while episode_index < num_episodes:
logging.info(f"Recording episode {episode_index}")
os.system(f'say "Recording episode {episode_index}" &')
ep_dict = {}
@ -273,7 +309,11 @@ def record_dataset(
not_image_keys = [key for key in observation if "image" not in key]
for key in image_keys:
executor.submit(save_image, observation[key], key, frame_index, episode_index, videos_dir)
futures += [
executor.submit(
save_image, observation[key], key, frame_index, episode_index, videos_dir
)
]
for key in not_image_keys:
if key not in ep_dict:
@ -299,28 +339,24 @@ def record_dataset(
exit_early = False
break
# Skip resetting if 0 second allocated or it is the last episode
if reset_time_s == 0 or episode_index == num_episodes - 1:
continue
if not stop_recording:
# Start resetting env while the executor are finishing
logging.info("Reset the environment")
os.system('say "Reset the environment" &')
logging.info("Resetting environment")
os.system('say "Resetting environment" &')
timestamp = 0
start_time = time.perf_counter()
while timestamp < reset_time_s:
time.sleep(1)
timestamp = time.perf_counter() - start_time
if exit_early:
exit_early = False
break
# During env reset we save the data and encode the videos
num_frames = frame_index
for key in image_keys:
tmp_imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
fname = f"{key}_episode_{episode_index:06d}.mp4"
# store the reference to the video frame, even tho the videos are not yet encoded
video_path = local_dir / "videos" / fname
if video_path.exists():
video_path.unlink()
# Store the reference to the video frame, even tho the videos are not yet encoded
ep_dict[key] = []
for i in range(num_frames):
ep_dict[key].append({"path": f"videos/{fname}", "timestamp": i / fps})
@ -339,30 +375,71 @@ def record_dataset(
done[-1] = True
ep_dict["next.done"] = done
ep_dicts.append(ep_dict)
ep_path = episodes_dir / f"episode_{episode_index}.safetensors"
print("Saving episode dictionary...")
torch.save(ep_dict, ep_path)
# last episode
if episode_index == num_episodes - 1:
rec_info = {
"last_episode_index": episode_index,
}
with open(rec_info_path, "w") as f:
json.dump(rec_info, f)
# Wait if necessary
with tqdm.tqdm(total=reset_time_s, desc="Waiting") as pbar:
while timestamp < reset_time_s and not stop_recording:
time.sleep(1)
timestamp = time.perf_counter() - start_time
pbar.update(1)
if exit_early:
exit_early = False
break
# Skip updating episode index which forces re-recording episode
if rerecord_episode:
rerecord_episode = False
continue
episode_index += 1
# Only for last episode
if stop_recording or episode_index == num_episodes:
logging.info("Done recording")
os.system('say "Done recording" &')
os.system('say "Done recording"')
logging.info("Waiting for threads writting the images on disk to terminate...")
listener.stop()
for _ in tqdm.tqdm(
concurrent.futures.as_completed(futures), total=len(futures), desc="Writting images"
):
pass
break
data_dict = concatenate_episodes(ep_dicts)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
num_episodes = episode_index
logging.info("Encoding images to videos")
os.system('say "Encoding images to videos" &')
for episode_index in range(num_episodes):
logging.info("Encoding videos")
os.system('say "Encoding videos" &')
# Use ffmpeg to convert frames stored as png into mp4 videos
for episode_index in tqdm.tqdm(range(num_episodes)):
for key in image_keys:
tmp_imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
fname = f"{key}_episode_{episode_index:06d}.mp4"
video_path = local_dir / "videos" / fname
if video_path.exists():
continue
# note: `encode_video_frames` is a blocking call. Making it asynchronous shouldn't speedup encoding,
# since video encoding with ffmpeg is already using multithreading.
encode_video_frames(tmp_imgs_dir, video_path, fps)
# Clean temporary images directory
shutil.rmtree(tmp_imgs_dir)
encode_video_frames(tmp_imgs_dir, video_path, fps, overwrite=True)
logging.info("Concatenating episodes")
ep_dicts = []
for episode_index in tqdm.tqdm(range(num_episodes)):
ep_path = episodes_dir / f"episode_{episode_index}.safetensors"
ep_dict = torch.load(ep_path)
ep_dicts.append(ep_dict)
data_dict = concatenate_episodes(ep_dicts)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
@ -378,8 +455,13 @@ def record_dataset(
info=info,
videos_dir=videos_dir,
)
stats = compute_stats(lerobot_dataset) if run_compute_stats else {}
if run_compute_stats:
logging.info("Computing dataset statistics")
os.system('say "Computing dataset statistics" &')
stats = compute_stats(lerobot_dataset)
lerobot_dataset.stats = stats
else:
logging.info("Skipping computation of the dataset statistrics")
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
hf_dataset.save_to_disk(str(local_dir / "train"))
@ -389,8 +471,8 @@ def record_dataset(
# TODO(rcadene): push to hub
logging.info("Done, exiting")
os.system('say "Done, exiting" &')
logging.info("Exiting")
os.system('say "Exiting" &')
return lerobot_dataset
@ -532,6 +614,19 @@ if __name__ == "__main__":
help="By default, run the computation of the data statistics at the end of data collection. Compute intensive and not required to just replay an episode.",
)
parser_record.add_argument(
"--num-image-writters",
type=int,
default=4,
help="Number of threads writting the frames as png images on disk. Don't set too much as you might get unstable fps due to main thread being blocked.",
)
parser_record.add_argument(
"--force-override",
type=int,
default=0,
help="By default, data recording is resumed. When set to 1, delete the local directory and start data recording from scratch.",
)
parser_replay = subparsers.add_parser("replay_episode", parents=[base_parser])
parser_replay.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"