Merge branch 'main' into aloha_hd5_to_dataset_v2
This commit is contained in:
commit
dca5c22f9c
|
@ -8,6 +8,8 @@ on:
|
|||
schedule:
|
||||
- cron: "0 1 * * *"
|
||||
|
||||
permissions: {}
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
|
@ -25,11 +27,14 @@ jobs:
|
|||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
cache-binary: false
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true
|
||||
persist-credentials: false
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
|
@ -60,11 +65,14 @@ jobs:
|
|||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
cache-binary: false
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true
|
||||
persist-credentials: false
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
|
@ -89,9 +97,13 @@ jobs:
|
|||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
cache-binary: false
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
|
|
|
@ -7,6 +7,8 @@ on:
|
|||
schedule:
|
||||
- cron: "0 2 * * *"
|
||||
|
||||
permissions: {}
|
||||
|
||||
# env:
|
||||
# SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
|
||||
jobs:
|
||||
|
|
|
@ -8,6 +8,8 @@ on:
|
|||
branches:
|
||||
- main
|
||||
|
||||
permissions: {}
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
|
@ -17,7 +19,9 @@ jobs:
|
|||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
|
@ -34,49 +38,7 @@ jobs:
|
|||
run: python -m pip install "ruff==${{ env.RUFF_VERSION }}"
|
||||
|
||||
- name: Ruff check
|
||||
run: ruff check
|
||||
run: ruff check --output-format=github
|
||||
|
||||
- name: Ruff format
|
||||
run: ruff format --diff
|
||||
|
||||
|
||||
poetry_check:
|
||||
name: Poetry check
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install poetry
|
||||
run: pipx install "poetry<2.0.0"
|
||||
|
||||
- name: Poetry check
|
||||
run: poetry check
|
||||
|
||||
|
||||
poetry_relax:
|
||||
name: Poetry relax
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install poetry
|
||||
run: pipx install "poetry<2.0.0"
|
||||
|
||||
- name: Install poetry-relax
|
||||
run: poetry self add poetry-relax
|
||||
|
||||
- name: Poetry relax
|
||||
id: poetry_relax
|
||||
run: |
|
||||
output=$(poetry relax --check 2>&1)
|
||||
if echo "$output" | grep -q "Proposing updates"; then
|
||||
echo "$output"
|
||||
echo ""
|
||||
echo "Some dependencies have caret '^' version requirement added by poetry by default."
|
||||
echo "Please replace them with '>='. You can do this by hand or use poetry-relax to do this."
|
||||
exit 1
|
||||
else
|
||||
echo "$output"
|
||||
fi
|
||||
|
|
|
@ -8,6 +8,8 @@ on:
|
|||
# Run only when DockerFile files are modified
|
||||
- "docker/**"
|
||||
|
||||
permissions: {}
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
|
@ -20,6 +22,8 @@ jobs:
|
|||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
|
@ -28,15 +32,12 @@ jobs:
|
|||
files: docker/**
|
||||
json: "true"
|
||||
|
||||
- name: Run step if only the files listed above change
|
||||
- name: Run step if only the files listed above change # zizmor: ignore[template-injection]
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
id: set-matrix
|
||||
env:
|
||||
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
|
||||
run: |
|
||||
echo "matrix=${{ steps.changed-files.outputs.all_changed_files}}" >> $GITHUB_OUTPUT
|
||||
|
||||
|
||||
build_modified_dockerfiles:
|
||||
name: Build modified Docker images
|
||||
needs: get_changed_files
|
||||
|
@ -50,9 +51,13 @@ jobs:
|
|||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
cache-binary: false
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
- name: Build Docker image
|
||||
uses: docker/build-push-action@v5
|
||||
|
|
|
@ -7,7 +7,8 @@ on:
|
|||
- "tests/**"
|
||||
- "examples/**"
|
||||
- ".github/**"
|
||||
- "poetry.lock"
|
||||
- "pyproject.toml"
|
||||
- ".pre-commit-config.yaml"
|
||||
- "Makefile"
|
||||
- ".cache/**"
|
||||
push:
|
||||
|
@ -18,10 +19,16 @@ on:
|
|||
- "tests/**"
|
||||
- "examples/**"
|
||||
- ".github/**"
|
||||
- "poetry.lock"
|
||||
- "pyproject.toml"
|
||||
- ".pre-commit-config.yaml"
|
||||
- "Makefile"
|
||||
- ".cache/**"
|
||||
|
||||
permissions: {}
|
||||
|
||||
env:
|
||||
UV_VERSION: "0.6.0"
|
||||
|
||||
jobs:
|
||||
pytest:
|
||||
name: Pytest
|
||||
|
@ -32,6 +39,7 @@ jobs:
|
|||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
persist-credentials: false
|
||||
|
||||
- name: Install apt dependencies
|
||||
# portaudio19-dev is needed to install pyaudio
|
||||
|
@ -39,25 +47,19 @@ jobs:
|
|||
sudo apt-get update && \
|
||||
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
|
||||
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry && poetry config virtualenvs.in-project true
|
||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
||||
|
||||
# TODO(rcadene, aliberts): python 3.12 seems to be used in the tests, not python 3.10
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v5
|
||||
- name: Install uv and python
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
enable-cache: true
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: "3.10"
|
||||
cache: "poetry"
|
||||
|
||||
- name: Install poetry dependencies
|
||||
run: |
|
||||
poetry install --all-extras
|
||||
- name: Install lerobot (all extras)
|
||||
run: uv sync --all-extras
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest tests -v --cov=./lerobot --durations=0 \
|
||||
uv run pytest tests -v --cov=./lerobot --durations=0 \
|
||||
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
||||
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||
|
@ -72,28 +74,24 @@ jobs:
|
|||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
persist-credentials: false
|
||||
|
||||
- name: Install apt dependencies
|
||||
run: sudo apt-get update && sudo apt-get install -y ffmpeg
|
||||
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry && poetry config virtualenvs.in-project true
|
||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
||||
|
||||
# TODO(rcadene, aliberts): python 3.12 seems to be used in the tests, not python 3.10
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v5
|
||||
- name: Install uv and python
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
enable-cache: true
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: "3.10"
|
||||
|
||||
- name: Install poetry dependencies
|
||||
run: |
|
||||
poetry install --extras "test"
|
||||
- name: Install lerobot
|
||||
run: uv sync --extra "test"
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest tests -v --cov=./lerobot --durations=0 \
|
||||
uv run pytest tests -v --cov=./lerobot --durations=0 \
|
||||
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
||||
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||
|
@ -108,6 +106,7 @@ jobs:
|
|||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
persist-credentials: false
|
||||
|
||||
- name: Install apt dependencies
|
||||
# portaudio19-dev is needed to install pyaudio
|
||||
|
@ -115,20 +114,21 @@ jobs:
|
|||
sudo apt-get update && \
|
||||
sudo apt-get install -y libegl1-mesa-dev portaudio19-dev
|
||||
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry && poetry config virtualenvs.in-project true
|
||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v5
|
||||
- name: Install uv and python
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
enable-cache: true
|
||||
version: ${{ env.UV_VERSION }}
|
||||
python-version: "3.10"
|
||||
cache: "poetry"
|
||||
|
||||
- name: Install poetry dependencies
|
||||
- name: Install lerobot (all extras)
|
||||
run: |
|
||||
poetry install --all-extras
|
||||
uv venv
|
||||
uv sync --all-extras
|
||||
|
||||
- name: venv
|
||||
run: |
|
||||
echo "PYTHON_PATH=${{ github.workspace }}/.venv/bin/python" >> $GITHUB_ENV
|
||||
|
||||
- name: Test end-to-end
|
||||
run: |
|
||||
|
|
|
@ -3,8 +3,7 @@ on:
|
|||
|
||||
name: Secret Leaks
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
permissions: {}
|
||||
|
||||
jobs:
|
||||
trufflehog:
|
||||
|
@ -14,6 +13,8 @@ jobs:
|
|||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
|
||||
- name: Secret Scanning
|
||||
uses: trufflesecurity/trufflehog@main
|
||||
with:
|
||||
|
|
|
@ -49,6 +49,10 @@ share/python-wheels/
|
|||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# uv/poetry lock files
|
||||
poetry.lock
|
||||
uv.lock
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
|
|
|
@ -14,24 +14,20 @@ repos:
|
|||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.19.0
|
||||
rev: v3.19.1
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.8.2
|
||||
rev: v0.9.6
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
- id: ruff-format
|
||||
- repo: https://github.com/python-poetry/poetry
|
||||
rev: 1.8.0
|
||||
hooks:
|
||||
- id: poetry-check
|
||||
- id: poetry-lock
|
||||
args:
|
||||
- "--check"
|
||||
- "--no-update"
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.21.2
|
||||
rev: v8.23.3
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
- repo: https://github.com/woodruffw/zizmor-pre-commit
|
||||
rev: v1.3.1
|
||||
hooks:
|
||||
- id: zizmor
|
||||
|
|
|
@ -129,38 +129,71 @@ Follow these steps to start contributing:
|
|||
|
||||
🚨 **Do not** work on the `main` branch.
|
||||
|
||||
4. for development, we use `poetry` instead of just `pip` to easily track our dependencies.
|
||||
If you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.
|
||||
4. for development, we advise to use a tool like `poetry` or `uv` instead of just `pip` to easily track our dependencies.
|
||||
Follow the instructions to [install poetry](https://python-poetry.org/docs/#installation) (use a version >=2.1.0) or to [install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) if you don't have one of them already.
|
||||
|
||||
Set up a development environment with conda or miniconda:
|
||||
```bash
|
||||
conda create -y -n lerobot-dev python=3.10 && conda activate lerobot-dev
|
||||
```
|
||||
|
||||
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
|
||||
If you're using `uv`, it can manage python versions so you can instead do:
|
||||
```bash
|
||||
poetry install --sync --extras "dev test"
|
||||
uv venv --python 3.10 && source .venv/bin/activate
|
||||
```
|
||||
|
||||
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
|
||||
|
||||
using `poetry`
|
||||
```bash
|
||||
poetry sync --extras "dev test"
|
||||
```
|
||||
|
||||
using `uv`
|
||||
```bash
|
||||
uv sync --extra dev --extra test
|
||||
```
|
||||
|
||||
You can also install the project with all its dependencies (including environments):
|
||||
|
||||
using `poetry`
|
||||
```bash
|
||||
poetry install --sync --all-extras
|
||||
poetry sync --all-extras
|
||||
```
|
||||
|
||||
using `uv`
|
||||
```bash
|
||||
uv sync --all-extras
|
||||
```
|
||||
|
||||
> **Note:** If you don't install simulation environments with `--all-extras`, the tests that require them will be skipped when running the pytest suite locally. However, they *will* be tested in the CI. In general, we advise you to install everything and test locally before pushing.
|
||||
|
||||
Whichever command you chose to install the project (e.g. `poetry install --sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
|
||||
Whichever command you chose to install the project (e.g. `poetry sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
|
||||
|
||||
The equivalent of `pip install some-package`, would just be:
|
||||
|
||||
using `poetry`
|
||||
```bash
|
||||
poetry add some-package
|
||||
```
|
||||
|
||||
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
|
||||
using `uv`
|
||||
```bash
|
||||
poetry lock --no-update
|
||||
uv add some-package
|
||||
```
|
||||
|
||||
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
|
||||
using `poetry`
|
||||
```bash
|
||||
poetry lock
|
||||
```
|
||||
|
||||
using `uv`
|
||||
```bash
|
||||
uv lock
|
||||
```
|
||||
|
||||
|
||||
5. Develop the features on your branch.
|
||||
|
||||
As you work on the features, you should make sure that the test suite
|
||||
|
|
8
Makefile
8
Makefile
|
@ -2,10 +2,10 @@
|
|||
|
||||
PYTHON_PATH := $(shell which python)
|
||||
|
||||
# If Poetry is installed, redefine PYTHON_PATH to use the Poetry-managed Python
|
||||
POETRY_CHECK := $(shell command -v poetry)
|
||||
ifneq ($(POETRY_CHECK),)
|
||||
PYTHON_PATH := $(shell poetry run which python)
|
||||
# If uv is installed and a virtual environment exists, use it
|
||||
UV_CHECK := $(shell command -v uv)
|
||||
ifneq ($(UV_CHECK),)
|
||||
PYTHON_PATH := $(shell .venv/bin/python)
|
||||
endif
|
||||
|
||||
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
|
||||
|
|
|
@ -58,7 +58,7 @@ RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
|
|||
RUN ln -s /usr/bin/python3 /usr/bin/python
|
||||
|
||||
# Install poetry
|
||||
RUN curl -sSL https://install.python-poetry.org | python - --version 1.8.5
|
||||
RUN curl -sSL https://install.python-poetry.org | python -
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
|
||||
RUN poetry config virtualenvs.create false
|
||||
|
|
|
@ -36,9 +36,14 @@ Using `pip`:
|
|||
pip install -e ".[dynamixel]"
|
||||
```
|
||||
|
||||
Or using `poetry`:
|
||||
Using `poetry`:
|
||||
```bash
|
||||
poetry install --sync --extras "dynamixel"
|
||||
poetry sync --extras "dynamixel"
|
||||
```
|
||||
|
||||
Using `uv`:
|
||||
```bash
|
||||
uv sync --extra "dynamixel"
|
||||
```
|
||||
|
||||
/!\ For Linux only, ffmpeg and opencv requires conda install for now. Run this exact sequence of commands:
|
||||
|
|
|
@ -104,7 +104,7 @@ def make_dataset(cfg: TrainPipelineConfig) -> LeRobotDataset | MultiLeRobotDatas
|
|||
)
|
||||
logging.info(
|
||||
"Multiple datasets were provided. Applied the following index mapping to the provided datasets: "
|
||||
f"{pformat(dataset.repo_id_to_index , indent=2)}"
|
||||
f"{pformat(dataset.repo_id_to_index, indent=2)}"
|
||||
)
|
||||
|
||||
if cfg.dataset.use_imagenet_stats:
|
||||
|
|
|
@ -72,7 +72,7 @@ def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episod
|
|||
# However, note that "nearest" might synchronize the reference camera with other cameras on slightly future timestamps.
|
||||
# are too far appart.
|
||||
direction="nearest",
|
||||
tolerance=pd.Timedelta(f"{1/fps} seconds"),
|
||||
tolerance=pd.Timedelta(f"{1 / fps} seconds"),
|
||||
)
|
||||
# Remove rows with episode_index -1 which indicates data that correspond to in-between episodes
|
||||
df = df[df["episode_index"] != -1]
|
||||
|
|
|
@ -409,9 +409,9 @@ class ACT(nn.Module):
|
|||
latent dimension.
|
||||
"""
|
||||
if self.config.use_vae and self.training:
|
||||
assert (
|
||||
"action" in batch
|
||||
), "actions must be provided when using the variational objective in training mode."
|
||||
assert "action" in batch, (
|
||||
"actions must be provided when using the variational objective in training mode."
|
||||
)
|
||||
|
||||
batch_size = (
|
||||
batch["observation.images"]
|
||||
|
|
|
@ -221,7 +221,7 @@ class DiffusionConfig(PreTrainedConfig):
|
|||
for key, image_ft in self.image_features.items():
|
||||
if image_ft.shape != first_image_ft.shape:
|
||||
raise ValueError(
|
||||
f"`{key}` does not match `{first_image_key}`, but we " "expect all image shapes to match."
|
||||
f"`{key}` does not match `{first_image_key}`, but we expect all image shapes to match."
|
||||
)
|
||||
|
||||
@property
|
||||
|
|
|
@ -300,7 +300,7 @@ class PI0Policy(PreTrainedPolicy):
|
|||
self._action_queue.extend(actions.transpose(0, 1))
|
||||
return self._action_queue.popleft()
|
||||
|
||||
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> dict[str, Tensor]:
|
||||
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> tuple[Tensor, dict[str, Tensor]]:
|
||||
"""Do a full training forward pass to compute the loss"""
|
||||
if self.config.adapt_to_pi_aloha:
|
||||
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
|
||||
|
@ -328,12 +328,12 @@ class PI0Policy(PreTrainedPolicy):
|
|||
losses = losses[:, :, : self.config.max_action_dim]
|
||||
loss_dict["losses_after_rm_padding"] = losses.clone()
|
||||
|
||||
loss = losses.mean()
|
||||
# For backward pass
|
||||
loss_dict["loss"] = loss
|
||||
loss = losses.mean()
|
||||
# For logging
|
||||
loss_dict["l2_loss"] = loss.item()
|
||||
return loss_dict
|
||||
|
||||
return loss, loss_dict
|
||||
|
||||
def prepare_images(self, batch):
|
||||
"""Apply Pi0 preprocessing to the images, like resizing to 224x224 and padding to keep aspect ratio, and
|
||||
|
|
|
@ -594,9 +594,9 @@ class TDMPCTOLD(nn.Module):
|
|||
|
||||
self.apply(_apply_fn)
|
||||
for m in [self._reward, *self._Qs]:
|
||||
assert isinstance(
|
||||
m[-1], nn.Linear
|
||||
), "Sanity check. The last linear layer needs 0 initialization on weights."
|
||||
assert isinstance(m[-1], nn.Linear), (
|
||||
"Sanity check. The last linear layer needs 0 initialization on weights."
|
||||
)
|
||||
nn.init.zeros_(m[-1].weight)
|
||||
nn.init.zeros_(m[-1].bias) # this has already been done, but keep this line here for good measure
|
||||
|
||||
|
|
|
@ -184,7 +184,7 @@ class VQBeTConfig(PreTrainedConfig):
|
|||
for key, image_ft in self.image_features.items():
|
||||
if image_ft.shape != first_image_ft.shape:
|
||||
raise ValueError(
|
||||
f"`{key}` does not match `{first_image_key}`, but we " "expect all image shapes to match."
|
||||
f"`{key}` does not match `{first_image_key}`, but we expect all image shapes to match."
|
||||
)
|
||||
|
||||
@property
|
||||
|
|
|
@ -203,9 +203,9 @@ class GPT(nn.Module):
|
|||
def forward(self, input, targets=None):
|
||||
device = input.device
|
||||
b, t, d = input.size()
|
||||
assert (
|
||||
t <= self.config.gpt_block_size
|
||||
), f"Cannot forward sequence of length {t}, block size is only {self.config.gpt_block_size}"
|
||||
assert t <= self.config.gpt_block_size, (
|
||||
f"Cannot forward sequence of length {t}, block size is only {self.config.gpt_block_size}"
|
||||
)
|
||||
|
||||
# positional encodings that are added to the input embeddings
|
||||
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
|
||||
|
@ -273,11 +273,11 @@ class GPT(nn.Module):
|
|||
assert len(inter_params) == 0, "parameters {} made it into both decay/no_decay sets!".format(
|
||||
str(inter_params)
|
||||
)
|
||||
assert (
|
||||
len(param_dict.keys() - union_params) == 0
|
||||
), "parameters {} were not separated into either decay/no_decay set!".format(
|
||||
assert len(param_dict.keys() - union_params) == 0, (
|
||||
"parameters {} were not separated into either decay/no_decay set!".format(
|
||||
str(param_dict.keys() - union_params),
|
||||
)
|
||||
)
|
||||
|
||||
decay = [param_dict[pn] for pn in sorted(decay)]
|
||||
no_decay = [param_dict[pn] for pn in sorted(no_decay)]
|
||||
|
@ -419,9 +419,9 @@ class ResidualVQ(nn.Module):
|
|||
# and the network should be able to reconstruct
|
||||
|
||||
if quantize_dim < self.num_quantizers:
|
||||
assert (
|
||||
self.quantize_dropout > 0.0
|
||||
), "quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations"
|
||||
assert self.quantize_dropout > 0.0, (
|
||||
"quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations"
|
||||
)
|
||||
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value=-1)
|
||||
|
||||
# get ready for gathering
|
||||
|
@ -472,9 +472,9 @@ class ResidualVQ(nn.Module):
|
|||
all_indices = []
|
||||
|
||||
if return_loss:
|
||||
assert not torch.any(
|
||||
indices == -1
|
||||
), "some of the residual vq indices were dropped out. please use indices derived when the module is in eval mode to derive cross entropy loss"
|
||||
assert not torch.any(indices == -1), (
|
||||
"some of the residual vq indices were dropped out. please use indices derived when the module is in eval mode to derive cross entropy loss"
|
||||
)
|
||||
ce_losses = []
|
||||
|
||||
should_quantize_dropout = self.training and self.quantize_dropout and not return_loss
|
||||
|
@ -887,9 +887,9 @@ class VectorQuantize(nn.Module):
|
|||
# only calculate orthogonal loss for the activated codes for this batch
|
||||
|
||||
if self.orthogonal_reg_active_codes_only:
|
||||
assert not (
|
||||
is_multiheaded and self.separate_codebook_per_head
|
||||
), "orthogonal regularization for only active codes not compatible with multi-headed with separate codebooks yet"
|
||||
assert not (is_multiheaded and self.separate_codebook_per_head), (
|
||||
"orthogonal regularization for only active codes not compatible with multi-headed with separate codebooks yet"
|
||||
)
|
||||
unique_code_ids = torch.unique(embed_ind)
|
||||
codebook = codebook[:, unique_code_ids]
|
||||
|
||||
|
@ -999,9 +999,9 @@ def gumbel_sample(
|
|||
ind = sampling_logits.argmax(dim=dim)
|
||||
one_hot = F.one_hot(ind, size).type(dtype)
|
||||
|
||||
assert not (
|
||||
reinmax and not straight_through
|
||||
), "reinmax can only be turned on if using straight through gumbel softmax"
|
||||
assert not (reinmax and not straight_through), (
|
||||
"reinmax can only be turned on if using straight through gumbel softmax"
|
||||
)
|
||||
|
||||
if not straight_through or temperature <= 0.0 or not training:
|
||||
return ind, one_hot
|
||||
|
@ -1209,9 +1209,9 @@ class EuclideanCodebook(nn.Module):
|
|||
self.gumbel_sample = gumbel_sample
|
||||
self.sample_codebook_temp = sample_codebook_temp
|
||||
|
||||
assert not (
|
||||
use_ddp and num_codebooks > 1 and kmeans_init
|
||||
), "kmeans init is not compatible with multiple codebooks in distributed environment for now"
|
||||
assert not (use_ddp and num_codebooks > 1 and kmeans_init), (
|
||||
"kmeans init is not compatible with multiple codebooks in distributed environment for now"
|
||||
)
|
||||
|
||||
self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors
|
||||
self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop
|
||||
|
|
|
@ -33,7 +33,7 @@ def log_control_info(robot: Robot, dt_s, episode_index=None, frame_index=None, f
|
|||
|
||||
def log_dt(shortname, dt_val_s):
|
||||
nonlocal log_items, fps
|
||||
info_str = f"{shortname}:{dt_val_s * 1000:5.2f} ({1/ dt_val_s:3.1f}hz)"
|
||||
info_str = f"{shortname}:{dt_val_s * 1000:5.2f} ({1 / dt_val_s:3.1f}hz)"
|
||||
if fps is not None:
|
||||
actual_fps = 1 / dt_val_s
|
||||
if actual_fps < fps - 1:
|
||||
|
|
|
@ -58,7 +58,7 @@ def deserialize_json_into_object(fpath: Path, obj: T) -> T:
|
|||
# Check that they have exactly the same set of keys.
|
||||
if target.keys() != source.keys():
|
||||
raise ValueError(
|
||||
f"Dictionary keys do not match.\n" f"Expected: {target.keys()}, got: {source.keys()}"
|
||||
f"Dictionary keys do not match.\nExpected: {target.keys()}, got: {source.keys()}"
|
||||
)
|
||||
|
||||
# Recursively update each key.
|
||||
|
|
|
@ -102,7 +102,7 @@ class WandBLogger:
|
|||
self._wandb.log_artifact(artifact)
|
||||
|
||||
def log_dict(self, d: dict, step: int, mode: str = "train"):
|
||||
if mode in {"train", "eval"}:
|
||||
if mode not in {"train", "eval"}:
|
||||
raise ValueError(mode)
|
||||
|
||||
for k, v in d.items():
|
||||
|
@ -114,7 +114,7 @@ class WandBLogger:
|
|||
self._wandb.log({f"{mode}/{k}": v}, step=step)
|
||||
|
||||
def log_video(self, video_path: str, step: int, mode: str = "train"):
|
||||
if mode in {"train", "eval"}:
|
||||
if mode not in {"train", "eval"}:
|
||||
raise ValueError(mode)
|
||||
|
||||
wandb_video = self._wandb.Video(video_path, fps=self.env_fps, format="mp4")
|
||||
|
|
|
@ -85,6 +85,11 @@ class TrainPipelineConfig(HubMixin):
|
|||
config_path = parser.parse_arg("config_path")
|
||||
if not config_path:
|
||||
raise ValueError("A config_path is expected when resuming a run.")
|
||||
if not Path(config_path).resolve().exists():
|
||||
raise NotADirectoryError(
|
||||
f"{config_path=} is expected to be a local path. "
|
||||
"Resuming from the hub is not supported for now."
|
||||
)
|
||||
policy_path = Path(config_path).parent
|
||||
self.policy.pretrained_path = policy_path
|
||||
self.checkpoint_path = policy_path.parent
|
||||
|
|
|
@ -151,7 +151,9 @@ def rollout(
|
|||
if return_observations:
|
||||
all_observations.append(deepcopy(observation))
|
||||
|
||||
observation = {key: observation[key].to(device, non_blocking=True) for key in observation}
|
||||
observation = {
|
||||
key: observation[key].to(device, non_blocking=device.type == "cuda") for key in observation
|
||||
}
|
||||
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(observation)
|
||||
|
|
|
@ -232,8 +232,10 @@ def train(cfg: TrainPipelineConfig):
|
|||
if is_log_step:
|
||||
logging.info(train_tracker)
|
||||
if wandb_logger:
|
||||
wandb_log_dict = {**train_tracker.to_dict(), **output_dict}
|
||||
wandb_logger.log_dict(wandb_log_dict)
|
||||
wandb_log_dict = train_tracker.to_dict()
|
||||
if output_dict:
|
||||
wandb_log_dict.update(output_dict)
|
||||
wandb_logger.log_dict(wandb_log_dict, step)
|
||||
train_tracker.reset_averages()
|
||||
|
||||
if cfg.save_checkpoint and is_saving_step:
|
||||
|
@ -271,6 +273,7 @@ def train(cfg: TrainPipelineConfig):
|
|||
logging.info(eval_tracker)
|
||||
if wandb_logger:
|
||||
wandb_log_dict = {**eval_tracker.to_dict(), **eval_info}
|
||||
wandb_logger.log_dict(wandb_log_dict, step, mode="eval")
|
||||
wandb_logger.log_video(eval_info["video_paths"][0], step, mode="eval")
|
||||
|
||||
if eval_env:
|
||||
|
|
|
@ -111,9 +111,9 @@ def visualize_dataset(
|
|||
output_dir: Path | None = None,
|
||||
) -> Path | None:
|
||||
if save:
|
||||
assert (
|
||||
output_dir is not None
|
||||
), "Set an output directory where to write .rrd files with `--output-dir path/to/directory`."
|
||||
assert output_dir is not None, (
|
||||
"Set an output directory where to write .rrd files with `--output-dir path/to/directory`."
|
||||
)
|
||||
|
||||
repo_id = dataset.repo_id
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load Diff
134
pyproject.toml
134
pyproject.toml
|
@ -1,18 +1,24 @@
|
|||
[tool.poetry]
|
||||
[project.urls]
|
||||
homepage = "https://github.com/huggingface/lerobot"
|
||||
issues = "https://github.com/huggingface/lerobot/issues"
|
||||
discord = "https://discord.gg/s3KuuzsPFb"
|
||||
|
||||
[project]
|
||||
name = "lerobot"
|
||||
version = "0.1.0"
|
||||
description = "🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch"
|
||||
authors = [
|
||||
"Rémi Cadène <re.cadene@gmail.com>",
|
||||
"Simon Alibert <alibert.sim@gmail.com>",
|
||||
"Alexander Soare <alexander.soare159@gmail.com>",
|
||||
"Quentin Gallouédec <quentin.gallouedec@ec-lyon.fr>",
|
||||
"Adil Zouitine <adilzouitinegm@gmail.com>",
|
||||
"Thomas Wolf <thomaswolfcontact@gmail.com>",
|
||||
{name = "Rémi Cadène", email = "re.cadene@gmail.com"},
|
||||
{name = "Simon Alibert", email = "alibert.sim@gmail.com"},
|
||||
{name = "Alexander Soare", email = "alexander.soare159@gmail.com"},
|
||||
{name = "Quentin Gallouédec", email = "quentin.gallouedec@ec-lyon.fr"},
|
||||
{name = "Adil Zouitine", email = "adilzouitinegm@gmail.com"},
|
||||
{name = "Thomas Wolf", email = "thomaswolfcontact@gmail.com"},
|
||||
]
|
||||
repository = "https://github.com/huggingface/lerobot"
|
||||
readme = "README.md"
|
||||
license = "Apache-2.0"
|
||||
license = {text = "Apache-2.0"}
|
||||
requires-python = ">=3.10"
|
||||
keywords = ["robotics", "deep learning", "pytorch"]
|
||||
classifiers=[
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Intended Audience :: Developers",
|
||||
|
@ -23,70 +29,56 @@ classifiers=[
|
|||
"License :: OSI Approved :: Apache Software License",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
]
|
||||
packages = [{include = "lerobot"}]
|
||||
dependencies = [
|
||||
"cmake>=3.29.0.1",
|
||||
"datasets>=2.19.0",
|
||||
"deepdiff>=7.0.1",
|
||||
"diffusers>=0.27.2",
|
||||
"draccus>=0.10.0",
|
||||
"einops>=0.8.0",
|
||||
"flask>=3.0.3",
|
||||
"gdown>=5.1.0",
|
||||
"gymnasium==0.29.1", # TODO(rcadene, aliberts): Make gym 1.0.0 work
|
||||
"h5py>=3.10.0",
|
||||
"huggingface-hub[hf-transfer,cli]>=0.27.1 ; python_version < '4.0'",
|
||||
"hydra-core>=1.3.2",
|
||||
"imageio[ffmpeg]>=2.34.0",
|
||||
"jsonlines>=4.0.0",
|
||||
"numba>=0.59.0",
|
||||
"omegaconf>=2.3.0",
|
||||
"opencv-python>=4.9.0",
|
||||
"pyav>=12.0.5",
|
||||
"pymunk>=6.6.0",
|
||||
"rerun-sdk>=0.21.0",
|
||||
"termcolor>=2.4.0",
|
||||
"torch>=2.2.1",
|
||||
"torchvision>=0.21.0",
|
||||
"wandb>=0.16.3",
|
||||
"zarr>=2.17.0"
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
aloha = ["gym-aloha>=0.1.1 ; python_version < '4.0'"]
|
||||
dev = ["pre-commit>=3.7.0", "debugpy>=1.8.1"]
|
||||
dora = ["gym-dora @ git+https://github.com/dora-rs/dora-lerobot.git#subdirectory=gym_dora ; python_version < '4.0'"]
|
||||
dynamixel = ["dynamixel-sdk>=3.7.31", "pynput>=1.7.7"]
|
||||
feetech = ["feetech-servo-sdk>=1.0.0", "pynput>=1.7.7"]
|
||||
intelrealsense = ["pyrealsense2>=2.55.1.6486 ; sys_platform != 'darwin'"]
|
||||
pi0 = ["transformers>=4.48.0"]
|
||||
pusht = ["gym-pusht>=0.1.5 ; python_version < '4.0'"]
|
||||
stretch = [
|
||||
"hello-robot-stretch-body>=0.7.27 ; python_version < '4.0' and sys_platform == 'linux'",
|
||||
"pyrender @ git+https://github.com/mmatl/pyrender.git ; sys_platform == 'linux'",
|
||||
"pyrealsense2>=2.55.1.6486 ; sys_platform != 'darwin'",
|
||||
"pynput>=1.7.7"
|
||||
]
|
||||
test = ["pytest>=8.1.0", "pytest-cov>=5.0.0", "pyserial>=3.5"]
|
||||
umi = ["imagecodecs>=2024.1.1"]
|
||||
video_benchmark = ["scikit-image>=0.23.2", "pandas>=2.2.2"]
|
||||
xarm = ["gym-xarm>=0.1.1 ; python_version < '4.0'"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<3.13"
|
||||
termcolor = ">=2.4.0"
|
||||
wandb = ">=0.16.3"
|
||||
imageio = {extras = ["ffmpeg"], version = ">=2.34.0"}
|
||||
gdown = ">=5.1.0"
|
||||
einops = ">=0.8.0"
|
||||
pymunk = ">=6.6.0"
|
||||
zarr = ">=2.17.0"
|
||||
numba = ">=0.59.0"
|
||||
torch = ">=2.2.1"
|
||||
opencv-python = ">=4.9.0"
|
||||
diffusers = ">=0.27.2"
|
||||
torchvision = ">=0.21.0"
|
||||
h5py = ">=3.10.0"
|
||||
huggingface-hub = {extras = ["hf-transfer", "cli"], version = ">=0.27.1"}
|
||||
gymnasium = "==0.29.1" # TODO(rcadene, aliberts): Make gym 1.0.0 work
|
||||
cmake = ">=3.29.0.1"
|
||||
gym-dora = { git = "https://github.com/dora-rs/dora-lerobot.git", subdirectory = "gym_dora", optional = true }
|
||||
gym-pusht = { version = ">=0.1.5", optional = true}
|
||||
gym-xarm = { version = ">=0.1.1", optional = true}
|
||||
gym-aloha = { version = ">=0.1.1", optional = true}
|
||||
pre-commit = {version = ">=3.7.0", optional = true}
|
||||
debugpy = {version = ">=1.8.1", optional = true}
|
||||
pytest = {version = ">=8.1.0", optional = true}
|
||||
pytest-cov = {version = ">=5.0.0", optional = true}
|
||||
datasets = ">=2.19.0"
|
||||
imagecodecs = { version = ">=2024.1.1", optional = true }
|
||||
pyav = ">=12.0.5"
|
||||
rerun-sdk = ">=0.21.0"
|
||||
deepdiff = ">=7.0.1"
|
||||
flask = ">=3.0.3"
|
||||
pandas = {version = ">=2.2.2", optional = true}
|
||||
scikit-image = {version = ">=0.23.2", optional = true}
|
||||
dynamixel-sdk = {version = ">=3.7.31", optional = true}
|
||||
pynput = {version = ">=1.7.7", optional = true}
|
||||
feetech-servo-sdk = {version = ">=1.0.0", optional = true}
|
||||
setuptools = {version = "!=71.0.1", optional = true} # TODO(rcadene, aliberts): 71.0.1 has a bug
|
||||
pyrealsense2 = {version = ">=2.55.1.6486", markers = "sys_platform != 'darwin'", optional = true} # TODO(rcadene, aliberts): Fix on Mac
|
||||
pyrender = {git = "https://github.com/mmatl/pyrender.git", markers = "sys_platform == 'linux'", optional = true}
|
||||
hello-robot-stretch-body = {version = ">=0.7.27", markers = "sys_platform == 'linux'", optional = true}
|
||||
pyserial = {version = ">=3.5", optional = true}
|
||||
jsonlines = ">=4.0.0"
|
||||
transformers = {version = ">=4.48.0", optional = true}
|
||||
draccus = ">=0.10.0"
|
||||
|
||||
|
||||
[tool.poetry.extras]
|
||||
dora = ["gym-dora"]
|
||||
pusht = ["gym-pusht"]
|
||||
xarm = ["gym-xarm"]
|
||||
aloha = ["gym-aloha"]
|
||||
dev = ["pre-commit", "debugpy"]
|
||||
test = ["pytest", "pytest-cov", "pyserial"]
|
||||
umi = ["imagecodecs"]
|
||||
video_benchmark = ["scikit-image", "pandas"]
|
||||
dynamixel = ["dynamixel-sdk", "pynput"]
|
||||
feetech = ["feetech-servo-sdk", "pynput"]
|
||||
intelrealsense = ["pyrealsense2"]
|
||||
stretch = ["hello-robot-stretch-body", "pyrender", "pyrealsense2", "pynput"]
|
||||
pi0 = ["transformers"]
|
||||
[tool.poetry]
|
||||
requires-poetry = ">=2.1"
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 110
|
||||
|
|
|
@ -49,17 +49,17 @@ def save_dataset_to_safetensors(output_dir, repo_id="lerobot/pusht"):
|
|||
# save 2 first frames of first episode
|
||||
i = dataset.episode_data_index["from"][0].item()
|
||||
save_file(dataset[i], repo_dir / f"frame_{i}.safetensors")
|
||||
save_file(dataset[i + 1], repo_dir / f"frame_{i+1}.safetensors")
|
||||
save_file(dataset[i + 1], repo_dir / f"frame_{i + 1}.safetensors")
|
||||
|
||||
# save 2 frames at the middle of first episode
|
||||
i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2)
|
||||
save_file(dataset[i], repo_dir / f"frame_{i}.safetensors")
|
||||
save_file(dataset[i + 1], repo_dir / f"frame_{i+1}.safetensors")
|
||||
save_file(dataset[i + 1], repo_dir / f"frame_{i + 1}.safetensors")
|
||||
|
||||
# save 2 last frames of first episode
|
||||
i = dataset.episode_data_index["to"][0].item()
|
||||
save_file(dataset[i - 2], repo_dir / f"frame_{i-2}.safetensors")
|
||||
save_file(dataset[i - 1], repo_dir / f"frame_{i-1}.safetensors")
|
||||
save_file(dataset[i - 2], repo_dir / f"frame_{i - 2}.safetensors")
|
||||
save_file(dataset[i - 1], repo_dir / f"frame_{i - 1}.safetensors")
|
||||
|
||||
# TODO(rcadene): Enable testing on second and last episode
|
||||
# We currently cant because our test dataset only contains the first episode
|
||||
|
|
|
@ -336,9 +336,9 @@ def test_backward_compatibility(repo_id):
|
|||
assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same"
|
||||
|
||||
for key in new_frame:
|
||||
assert torch.isclose(
|
||||
new_frame[key], old_frame[key]
|
||||
).all(), f"{key=} for index={i} does not contain the same value"
|
||||
assert torch.isclose(new_frame[key], old_frame[key]).all(), (
|
||||
f"{key=} for index={i} does not contain the same value"
|
||||
)
|
||||
|
||||
# test2 first frames of first episode
|
||||
i = dataset.episode_data_index["from"][0].item()
|
||||
|
|
|
@ -343,13 +343,13 @@ def test_save_all_transforms(img_tensor_factory, tmp_path):
|
|||
# Check if the combined transforms directory exists and contains the right files
|
||||
combined_transforms_dir = tmp_path / "all"
|
||||
assert combined_transforms_dir.exists(), "Combined transforms directory was not created."
|
||||
assert any(
|
||||
combined_transforms_dir.iterdir()
|
||||
), "No transformed images found in combined transforms directory."
|
||||
assert any(combined_transforms_dir.iterdir()), (
|
||||
"No transformed images found in combined transforms directory."
|
||||
)
|
||||
for i in range(1, n_examples + 1):
|
||||
assert (
|
||||
combined_transforms_dir / f"{i}.png"
|
||||
).exists(), f"Combined transform image {i}.png was not found."
|
||||
assert (combined_transforms_dir / f"{i}.png").exists(), (
|
||||
f"Combined transform image {i}.png was not found."
|
||||
)
|
||||
|
||||
|
||||
def test_save_each_transform(img_tensor_factory, tmp_path):
|
||||
|
@ -369,6 +369,6 @@ def test_save_each_transform(img_tensor_factory, tmp_path):
|
|||
# Check for specific files within each transform directory
|
||||
expected_files = [f"{i}.png" for i in range(1, n_examples + 1)] + ["min.png", "max.png", "mean.png"]
|
||||
for file_name in expected_files:
|
||||
assert (
|
||||
transform_dir / file_name
|
||||
).exists(), f"{file_name} was not found in {transform} directory."
|
||||
assert (transform_dir / file_name).exists(), (
|
||||
f"{file_name} was not found in {transform} directory."
|
||||
)
|
||||
|
|
|
@ -132,9 +132,9 @@ def test_fifo():
|
|||
buffer.add_data(new_data)
|
||||
n_more_episodes = 2
|
||||
# Developer sanity check (in case someone changes the global `buffer_capacity`).
|
||||
assert (
|
||||
n_episodes + n_more_episodes
|
||||
) * n_frames_per_episode > buffer_capacity, "Something went wrong with the test code."
|
||||
assert (n_episodes + n_more_episodes) * n_frames_per_episode > buffer_capacity, (
|
||||
"Something went wrong with the test code."
|
||||
)
|
||||
more_new_data = make_spoof_data_frames(n_more_episodes, n_frames_per_episode)
|
||||
buffer.add_data(more_new_data)
|
||||
assert len(buffer) == buffer_capacity, "The buffer should be full."
|
||||
|
@ -203,9 +203,9 @@ def test_delta_timestamps_outside_tolerance_outside_episode_range():
|
|||
item = buffer[2]
|
||||
data, is_pad = item["index"], item["index_is_pad"]
|
||||
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
|
||||
assert torch.equal(
|
||||
is_pad, torch.tensor([True, False, False, True, True])
|
||||
), "Padding does not match expected values"
|
||||
assert torch.equal(is_pad, torch.tensor([True, False, False, True, True])), (
|
||||
"Padding does not match expected values"
|
||||
)
|
||||
|
||||
|
||||
# Arbitrarily set small dataset sizes, making sure to have uneven sizes.
|
||||
|
|
|
@ -193,12 +193,12 @@ def test_policy(ds_repo_id, env_name, env_kwargs, policy_name, policy_kwargs):
|
|||
observation_ = deepcopy(observation)
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(observation).cpu().numpy()
|
||||
assert set(observation) == set(
|
||||
observation_
|
||||
), "Observation batch keys are not the same after a forward pass."
|
||||
assert all(
|
||||
torch.equal(observation[k], observation_[k]) for k in observation
|
||||
), "Observation batch values are not the same after a forward pass."
|
||||
assert set(observation) == set(observation_), (
|
||||
"Observation batch keys are not the same after a forward pass."
|
||||
)
|
||||
assert all(torch.equal(observation[k], observation_[k]) for k in observation), (
|
||||
"Observation batch values are not the same after a forward pass."
|
||||
)
|
||||
|
||||
# Test step through policy
|
||||
env.step(action)
|
||||
|
|
Loading…
Reference in New Issue