Fix grad_clip_norm 0 -> 10, Fix normalization min_max to be per channel

This commit is contained in:
Remi Cadene 2024-03-04 17:26:34 +00:00
parent cfc304e870
commit e29fbb50e8
2 changed files with 68 additions and 42 deletions

View File

@ -136,14 +136,14 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
storage = TensorStorage(TensorDict.load_memmap(self.root / dataset_id))
stats = self._compute_or_load_stats(storage)
stats["next", "observation", "image"] = stats["observation", "image"]
stats["next", "observation", "state"] = stats["observation", "state"]
transform = NormalizeTransform(
stats,
in_keys=[
# TODO(rcadene): imagenet normalization is applied inside diffusion policy
# We need to automate this for tdmpc and others
# ("observation", "image"),
("observation", "state"),
# TODO(rcadene): for tdmpc, we might want image and state
# TODO(rcadene): for tdmpc, we might want next image and state
# ("next", "observation", "image"),
# ("next", "observation", "state"),
("action"),
@ -151,7 +151,7 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
mode="min_max",
)
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, min_max_spec
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
transform.stats["observation", "state", "min"] = torch.tensor(
[13.456424, 32.938293], dtype=torch.float32
)
@ -302,29 +302,43 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
prefetch=True,
)
batch = rb.sample()
image_mean = torch.zeros(batch["observation", "image"].shape[1])
image_std = torch.zeros(batch["observation", "image"].shape[1])
image_max = -math.inf
image_min = math.inf
state_mean = torch.zeros(batch["observation", "state"].shape[1])
state_std = torch.zeros(batch["observation", "state"].shape[1])
state_max = -math.inf
state_min = math.inf
action_mean = torch.zeros(batch["action"].shape[1])
action_std = torch.zeros(batch["action"].shape[1])
action_max = -math.inf
action_min = math.inf
image_channels = batch["observation", "image"].shape[1]
image_mean = torch.zeros(image_channels)
image_std = torch.zeros(image_channels)
image_max = torch.tensor([-math.inf] * image_channels)
image_min = torch.tensor([math.inf] * image_channels)
state_channels = batch["observation", "state"].shape[1]
state_mean = torch.zeros(state_channels)
state_std = torch.zeros(state_channels)
state_max = torch.tensor([-math.inf] * state_channels)
state_min = torch.tensor([math.inf] * state_channels)
action_channels = batch["action"].shape[1]
action_mean = torch.zeros(action_channels)
action_std = torch.zeros(action_channels)
action_max = torch.tensor([-math.inf] * action_channels)
action_min = torch.tensor([math.inf] * action_channels)
for _ in tqdm.tqdm(range(num_batch)):
image_mean += einops.reduce(batch["observation", "image"], "b c h w -> c", reduction="mean")
state_mean += batch["observation", "state"].mean(dim=0)
action_mean += batch["action"].mean(dim=0)
image_max = max(image_max, batch["observation", "image"].max().item())
image_min = min(image_min, batch["observation", "image"].min().item())
state_max = max(state_max, batch["observation", "state"].max().item())
state_min = min(state_min, batch["observation", "state"].min().item())
action_max = max(action_max, batch["action"].max().item())
action_min = min(action_min, batch["action"].min().item())
image_mean += einops.reduce(batch["observation", "image"], "b c h w -> c", "mean")
state_mean += einops.reduce(batch["observation", "state"], "b c -> c", "mean")
action_mean += einops.reduce(batch["action"], "b c -> c", "mean")
b_image_max = einops.reduce(batch["observation", "image"], "b c h w -> c", "max")
b_image_min = einops.reduce(batch["observation", "image"], "b c h w -> c", "min")
b_state_max = einops.reduce(batch["observation", "state"], "b c -> c", "max")
b_state_min = einops.reduce(batch["observation", "state"], "b c -> c", "min")
b_action_max = einops.reduce(batch["action"], "b c -> c", "max")
b_action_min = einops.reduce(batch["action"], "b c -> c", "min")
image_max = torch.maximum(image_max, b_image_max)
image_min = torch.maximum(image_min, b_image_min)
state_max = torch.maximum(state_max, b_state_max)
state_min = torch.maximum(state_min, b_state_min)
action_max = torch.maximum(action_max, b_action_max)
action_min = torch.maximum(action_min, b_action_min)
batch = rb.sample()
image_mean /= num_batch
@ -332,16 +346,26 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
action_mean /= num_batch
for i in tqdm.tqdm(range(num_batch)):
image_mean_batch = einops.reduce(batch["observation", "image"], "b c h w -> c", reduction="mean")
image_std += (image_mean_batch - image_mean) ** 2
state_std += (batch["observation", "state"].mean(dim=0) - state_mean) ** 2
action_std += (batch["action"].mean(dim=0) - action_mean) ** 2
image_max = max(image_max, batch["observation", "image"].max().item())
image_min = min(image_min, batch["observation", "image"].min().item())
state_max = max(state_max, batch["observation", "state"].max().item())
state_min = min(state_min, batch["observation", "state"].min().item())
action_max = max(action_max, batch["action"].max().item())
action_min = min(action_min, batch["action"].min().item())
b_image_mean = einops.reduce(batch["observation", "image"], "b c h w -> c", "mean")
b_state_mean = einops.reduce(batch["observation", "state"], "b c -> c", "mean")
b_action_mean = einops.reduce(batch["action"], "b c -> c", "mean")
image_std += (b_image_mean - image_mean) ** 2
state_std += (b_state_mean - state_mean) ** 2
action_std += (b_action_mean - action_mean) ** 2
b_image_max = einops.reduce(batch["observation", "image"], "b c h w -> c", "max")
b_image_min = einops.reduce(batch["observation", "image"], "b c h w -> c", "min")
b_state_max = einops.reduce(batch["observation", "state"], "b c -> c", "max")
b_state_min = einops.reduce(batch["observation", "state"], "b c -> c", "min")
b_action_max = einops.reduce(batch["action"], "b c -> c", "max")
b_action_min = einops.reduce(batch["action"], "b c -> c", "min")
image_max = torch.maximum(image_max, b_image_max)
image_min = torch.maximum(image_min, b_image_min)
state_max = torch.maximum(state_max, b_state_max)
state_min = torch.maximum(state_min, b_state_min)
action_max = torch.maximum(action_max, b_action_max)
action_min = torch.maximum(action_min, b_action_min)
if i < num_batch - 1:
batch = rb.sample()
@ -353,19 +377,21 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
{
("observation", "image", "mean"): image_mean[None, :, None, None],
("observation", "image", "std"): image_std[None, :, None, None],
("observation", "image", "max"): torch.tensor(image_max),
("observation", "image", "min"): torch.tensor(image_min),
("observation", "image", "max"): image_max[None, :, None, None],
("observation", "image", "min"): image_min[None, :, None, None],
("observation", "state", "mean"): state_mean[None, :],
("observation", "state", "std"): state_std[None, :],
("observation", "state", "max"): torch.tensor(state_max),
("observation", "state", "min"): torch.tensor(state_min),
("observation", "state", "max"): state_max[None, :],
("observation", "state", "min"): state_min[None, :],
("action", "mean"): action_mean[None, :],
("action", "std"): action_std[None, :],
("action", "max"): torch.tensor(action_max),
("action", "min"): torch.tensor(action_min),
("action", "max"): action_max[None, :],
("action", "min"): action_min[None, :],
},
batch_size=[],
)
stats["next", "observation", "image"] = stats["observation", "image"]
stats["next", "observation", "state"] = stats["observation", "state"]
return stats
def _compute_or_load_stats(self, storage) -> TensorDict:

View File

@ -59,7 +59,7 @@ policy:
use_ema: true
lr_scheduler: cosine
lr_warmup_steps: 500
grad_clip_norm: 0
grad_clip_norm: 10
noise_scheduler:
_target_: diffusers.schedulers.scheduling_ddpm.DDPMScheduler