Add first tests

This commit is contained in:
Simon Alibert 2024-06-05 16:29:54 +00:00
parent 8237ed9aa4
commit e444b0d529
1 changed files with 80 additions and 0 deletions

80
tests/test_transforms.py Normal file
View File

@ -0,0 +1,80 @@
import pytest
import torch
from torchvision.transforms import v2
from torchvision.transforms.v2 import functional as F # noqa: N812
from lerobot.common.datasets.transforms import RandomSubsetApply, RangeRandomSharpness
class TestRandomSubsetApply:
@pytest.fixture(autouse=True)
def setup(self):
self.jitters = [
v2.ColorJitter(brightness=0.5),
v2.ColorJitter(contrast=0.5),
v2.ColorJitter(saturation=0.5),
]
self.flips = [v2.RandomHorizontalFlip(p=1), v2.RandomVerticalFlip(p=1)]
self.img = torch.rand(3, 224, 224)
@pytest.mark.parametrize("p", [[0, 1], [1, 0]])
def test_random_choice(self, p):
random_choice = RandomSubsetApply(self.flips, p=p, n_subset=1, random_order=False)
output = random_choice(self.img)
p_horz, _ = p
if p_horz:
torch.testing.assert_close(output, F.horizontal_flip(self.img))
else:
torch.testing.assert_close(output, F.vertical_flip(self.img))
def test_transform_all(self):
transform = RandomSubsetApply(self.jitters)
output = transform(self.img)
assert output.shape == self.img.shape
def test_transform_subset(self):
transform = RandomSubsetApply(self.jitters, n_subset=2)
output = transform(self.img)
assert output.shape == self.img.shape
def test_random_order(self):
random_order = RandomSubsetApply(self.flips, p=[0.5, 0.5], n_subset=2, random_order=True)
# We can't really check whether the transforms are actually applied in random order. However,
# horizontal and vertical flip are commutative. Meaning, even under the assumption that the transform
# applies them in random order, we can use a fixed order to compute the expected value.
actual = random_order(self.img)
expected = v2.Compose(self.flips)(self.img)
torch.testing.assert_close(actual, expected)
def test_probability_length_mismatch(self):
with pytest.raises(ValueError):
RandomSubsetApply(self.jitters, p=[0.5, 0.5])
def test_invalid_n_subset(self):
with pytest.raises(ValueError):
RandomSubsetApply(self.jitters, n_subset=5)
class TestRangeRandomSharpness:
@pytest.fixture(autouse=True)
def setup(self):
self.img = torch.rand(3, 224, 224)
def test_valid_range(self):
transform = RangeRandomSharpness(0.1, 2.0)
output = transform(self.img)
assert output.shape == self.img.shape
def test_invalid_range_min_negative(self):
with pytest.raises(ValueError):
RangeRandomSharpness(-0.1, 2.0)
def test_invalid_range_max_smaller(self):
with pytest.raises(ValueError):
RangeRandomSharpness(2.0, 0.1)
class TestMakeTransforms:
...
# TODO