Merge pull request #6 from Cadene/user/rcadene/2024_03_04_diffusion

Make diffusion work
This commit is contained in:
Remi 2024-03-04 18:30:40 +01:00 committed by GitHub
commit e990f3e148
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 276 additions and 142 deletions

View File

@ -69,7 +69,7 @@ def make_offline_buffer(cfg, sampler=None):
sampler=sampler,
batch_size=batch_size,
pin_memory=pin_memory,
prefetch=prefetch,
prefetch=prefetch if isinstance(prefetch, int) else None,
)
elif cfg.env.name == "pusht":
offline_buffer = PushtExperienceReplay(
@ -79,7 +79,7 @@ def make_offline_buffer(cfg, sampler=None):
sampler=sampler,
batch_size=batch_size,
pin_memory=pin_memory,
prefetch=prefetch,
prefetch=prefetch if isinstance(prefetch, int) else None,
)
else:
raise ValueError(cfg.env.name)

View File

@ -1,4 +1,5 @@
import logging
import math
import os
from pathlib import Path
from typing import Callable
@ -134,20 +135,32 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
else:
storage = TensorStorage(TensorDict.load_memmap(self.root / dataset_id))
mean_std = self._compute_or_load_mean_std(storage)
mean_std["next", "observation", "image"] = mean_std["observation", "image"]
mean_std["next", "observation", "state"] = mean_std["observation", "state"]
stats = self._compute_or_load_stats(storage)
transform = NormalizeTransform(
mean_std,
stats,
in_keys=[
("observation", "image"),
# TODO(rcadene): imagenet normalization is applied inside diffusion policy
# We need to automate this for tdmpc and others
# ("observation", "image"),
("observation", "state"),
("next", "observation", "image"),
("next", "observation", "state"),
# TODO(rcadene): for tdmpc, we might want next image and state
# ("next", "observation", "image"),
# ("next", "observation", "state"),
("action"),
],
mode="min_max",
)
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
transform.stats["observation", "state", "min"] = torch.tensor(
[13.456424, 32.938293], dtype=torch.float32
)
transform.stats["observation", "state", "max"] = torch.tensor(
[496.14618, 510.9579], dtype=torch.float32
)
transform.stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
transform.stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
if writer is None:
writer = ImmutableDatasetWriter()
if collate_fn is None:
@ -282,24 +295,50 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
return TensorStorage(td_data.lock_())
def _compute_mean_std(self, storage, num_batch=10, batch_size=32):
def _compute_stats(self, storage, num_batch=100, batch_size=32):
rb = TensorDictReplayBuffer(
storage=storage,
batch_size=batch_size,
prefetch=True,
)
batch = rb.sample()
image_mean = torch.zeros(batch["observation", "image"].shape[1])
image_std = torch.zeros(batch["observation", "image"].shape[1])
state_mean = torch.zeros(batch["observation", "state"].shape[1])
state_std = torch.zeros(batch["observation", "state"].shape[1])
action_mean = torch.zeros(batch["action"].shape[1])
action_std = torch.zeros(batch["action"].shape[1])
image_channels = batch["observation", "image"].shape[1]
image_mean = torch.zeros(image_channels)
image_std = torch.zeros(image_channels)
image_max = torch.tensor([-math.inf] * image_channels)
image_min = torch.tensor([math.inf] * image_channels)
state_channels = batch["observation", "state"].shape[1]
state_mean = torch.zeros(state_channels)
state_std = torch.zeros(state_channels)
state_max = torch.tensor([-math.inf] * state_channels)
state_min = torch.tensor([math.inf] * state_channels)
action_channels = batch["action"].shape[1]
action_mean = torch.zeros(action_channels)
action_std = torch.zeros(action_channels)
action_max = torch.tensor([-math.inf] * action_channels)
action_min = torch.tensor([math.inf] * action_channels)
for _ in tqdm.tqdm(range(num_batch)):
image_mean += einops.reduce(batch["observation", "image"], "b c h w -> c", reduction="mean")
state_mean += batch["observation", "state"].mean(dim=0)
action_mean += batch["action"].mean(dim=0)
image_mean += einops.reduce(batch["observation", "image"], "b c h w -> c", "mean")
state_mean += einops.reduce(batch["observation", "state"], "b c -> c", "mean")
action_mean += einops.reduce(batch["action"], "b c -> c", "mean")
b_image_max = einops.reduce(batch["observation", "image"], "b c h w -> c", "max")
b_image_min = einops.reduce(batch["observation", "image"], "b c h w -> c", "min")
b_state_max = einops.reduce(batch["observation", "state"], "b c -> c", "max")
b_state_min = einops.reduce(batch["observation", "state"], "b c -> c", "min")
b_action_max = einops.reduce(batch["action"], "b c -> c", "max")
b_action_min = einops.reduce(batch["action"], "b c -> c", "min")
image_max = torch.maximum(image_max, b_image_max)
image_min = torch.maximum(image_min, b_image_min)
state_max = torch.maximum(state_max, b_state_max)
state_min = torch.maximum(state_min, b_state_min)
action_max = torch.maximum(action_max, b_action_max)
action_min = torch.maximum(action_min, b_action_min)
batch = rb.sample()
image_mean /= num_batch
@ -307,10 +346,26 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
action_mean /= num_batch
for i in tqdm.tqdm(range(num_batch)):
image_mean_batch = einops.reduce(batch["observation", "image"], "b c h w -> c", reduction="mean")
image_std += (image_mean_batch - image_mean) ** 2
state_std += (batch["observation", "state"].mean(dim=0) - state_mean) ** 2
action_std += (batch["action"].mean(dim=0) - action_mean) ** 2
b_image_mean = einops.reduce(batch["observation", "image"], "b c h w -> c", "mean")
b_state_mean = einops.reduce(batch["observation", "state"], "b c -> c", "mean")
b_action_mean = einops.reduce(batch["action"], "b c -> c", "mean")
image_std += (b_image_mean - image_mean) ** 2
state_std += (b_state_mean - state_mean) ** 2
action_std += (b_action_mean - action_mean) ** 2
b_image_max = einops.reduce(batch["observation", "image"], "b c h w -> c", "max")
b_image_min = einops.reduce(batch["observation", "image"], "b c h w -> c", "min")
b_state_max = einops.reduce(batch["observation", "state"], "b c -> c", "max")
b_state_min = einops.reduce(batch["observation", "state"], "b c -> c", "min")
b_action_max = einops.reduce(batch["action"], "b c -> c", "max")
b_action_min = einops.reduce(batch["action"], "b c -> c", "min")
image_max = torch.maximum(image_max, b_image_max)
image_min = torch.maximum(image_min, b_image_min)
state_max = torch.maximum(state_max, b_state_max)
state_min = torch.maximum(state_min, b_state_min)
action_max = torch.maximum(action_max, b_action_max)
action_min = torch.maximum(action_min, b_action_min)
if i < num_batch - 1:
batch = rb.sample()
@ -318,25 +373,33 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
state_std = torch.sqrt(state_std / num_batch)
action_std = torch.sqrt(action_std / num_batch)
mean_std = TensorDict(
stats = TensorDict(
{
("observation", "image", "mean"): image_mean[None, :, None, None],
("observation", "image", "std"): image_std[None, :, None, None],
("observation", "image", "max"): image_max[None, :, None, None],
("observation", "image", "min"): image_min[None, :, None, None],
("observation", "state", "mean"): state_mean[None, :],
("observation", "state", "std"): state_std[None, :],
("observation", "state", "max"): state_max[None, :],
("observation", "state", "min"): state_min[None, :],
("action", "mean"): action_mean[None, :],
("action", "std"): action_std[None, :],
("action", "max"): action_max[None, :],
("action", "min"): action_min[None, :],
},
batch_size=[],
)
return mean_std
stats["next", "observation", "image"] = stats["observation", "image"]
stats["next", "observation", "state"] = stats["observation", "state"]
return stats
def _compute_or_load_mean_std(self, storage) -> TensorDict:
mean_std_path = self.root / self.dataset_id / "mean_std.pth"
if mean_std_path.exists():
mean_std = torch.load(mean_std_path)
def _compute_or_load_stats(self, storage) -> TensorDict:
stats_path = self.root / self.dataset_id / "stats.pth"
if stats_path.exists():
stats = torch.load(stats_path)
else:
logging.info(f"compute_mean_std and save to {mean_std_path}")
mean_std = self._compute_mean_std(storage)
torch.save(mean_std, mean_std_path)
return mean_std
logging.info(f"compute_stats and save to {stats_path}")
stats = self._compute_stats(storage)
torch.save(stats, stats_path)
return stats

View File

@ -1,7 +1,5 @@
from torchrl.envs.transforms import StepCounter, TransformedEnv
from lerobot.common.envs.transforms import Prod
def make_env(cfg, transform=None):
kwargs = {
@ -9,6 +7,8 @@ def make_env(cfg, transform=None):
"from_pixels": cfg.env.from_pixels,
"pixels_only": cfg.env.pixels_only,
"image_size": cfg.env.image_size,
# TODO(rcadene): do we want a specific eval_env_seed?
"seed": cfg.seed,
}
if cfg.env.name == "simxarm":
@ -19,6 +19,8 @@ def make_env(cfg, transform=None):
elif cfg.env.name == "pusht":
from lerobot.common.envs.pusht import PushtEnv
# assert kwargs["seed"] > 200, "Seed 0-200 are used for the demonstration dataset, so we don't want to seed the eval env with this range."
clsfunc = PushtEnv
else:
raise ValueError(cfg.env.name)
@ -28,12 +30,8 @@ def make_env(cfg, transform=None):
# limit rollout to max_steps
env = TransformedEnv(env, StepCounter(max_steps=cfg.env.episode_length))
if cfg.env.name == "pusht":
# to ensure pusht is in [0,255] like simxarm
env.append_transform(Prod(in_keys=[("observation", "image")], prod=255.0))
if transform is not None:
# useful to add mean and std normalization
# useful to add normalization
env.append_transform(transform)
return env

View File

@ -1,4 +1,5 @@
import importlib
from collections import deque
from typing import Optional
import torch
@ -27,12 +28,16 @@ class PushtEnv(EnvBase):
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=1,
num_prev_action=0,
):
super().__init__(device=device, batch_size=[])
self.frame_skip = frame_skip
self.from_pixels = from_pixels
self.pixels_only = pixels_only
self.image_size = image_size
self.num_prev_obs = num_prev_obs
self.num_prev_action = num_prev_action
if pixels_only:
assert from_pixels
@ -56,6 +61,12 @@ class PushtEnv(EnvBase):
self._make_spec()
self._current_seed = self.set_seed(seed)
if self.num_prev_obs > 0:
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
if self.num_prev_action > 0:
self._prev_action_queue = deque(maxlen=self.num_prev_action)
def render(self, mode="rgb_array", width=384, height=384):
if width != height:
raise NotImplementedError()
@ -67,7 +78,8 @@ class PushtEnv(EnvBase):
def _format_raw_obs(self, raw_obs):
if self.from_pixels:
obs = {"image": torch.from_numpy(raw_obs["image"])}
image = torch.from_numpy(raw_obs["image"])
obs = {"image": image}
if not self.pixels_only:
obs["state"] = torch.from_numpy(raw_obs["agent_pos"]).type(torch.float32)
@ -75,7 +87,6 @@ class PushtEnv(EnvBase):
# TODO:
obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
obs = TensorDict(obs, batch_size=[])
return obs
def _reset(self, tensordict: Optional[TensorDict] = None):
@ -87,9 +98,25 @@ class PushtEnv(EnvBase):
raw_obs = self._env.reset()
assert self._current_seed == self._env._seed
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue = deque(
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue = deque(
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": self._format_raw_obs(raw_obs),
"observation": TensorDict(obs, batch_size=[]),
"done": torch.tensor([False], dtype=torch.bool),
},
batch_size=[],
@ -100,18 +127,37 @@ class PushtEnv(EnvBase):
def _step(self, tensordict: TensorDict):
td = tensordict
# remove batch dim
action = td["action"].squeeze(0).numpy()
action = td["action"].numpy()
# step expects shape=(4,) so we pad if necessary
# TODO(rcadene): add info["is_success"] and info["success"] ?
sum_reward = 0
for _ in range(self.frame_skip):
raw_obs, reward, done, info = self._env.step(action)
if action.ndim == 1:
action = action.repeat(self.frame_skip, 1)
else:
if self.frame_skip > 1:
raise NotImplementedError()
num_action_steps = action.shape[0]
for i in range(num_action_steps):
raw_obs, reward, done, info = self._env.step(action[i])
sum_reward += reward
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue.append(obs["image"])
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue.append(obs["state"])
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": self._format_raw_obs(raw_obs),
"observation": TensorDict(obs, batch_size=[]),
"reward": torch.tensor([sum_reward], dtype=torch.float32),
# succes and done are true when coverage > self.success_threshold in env
"done": torch.tensor([done], dtype=torch.bool),
@ -124,14 +170,22 @@ class PushtEnv(EnvBase):
def _make_spec(self):
obs = {}
if self.from_pixels:
image_shape = (3, self.image_size, self.image_size)
if self.num_prev_obs > 0:
image_shape = (self.num_prev_obs, *image_shape)
obs["image"] = BoundedTensorSpec(
low=0,
high=1,
shape=(3, self.image_size, self.image_size),
shape=image_shape,
dtype=torch.float32,
device=self.device,
)
if not self.pixels_only:
state_shape = self._env.observation_space["agent_pos"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs, *state_shape)
obs["state"] = BoundedTensorSpec(
low=0,
high=512,
@ -141,6 +195,10 @@ class PushtEnv(EnvBase):
)
else:
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
state_shape = self._env.observation_space["observation"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
# TODO:
shape=self._env.observation_space["observation"].shape,

View File

@ -28,11 +28,12 @@ class NormalizeTransform(Transform):
def __init__(
self,
mean_std: TensorDictBase,
stats: TensorDictBase,
in_keys: Sequence[NestedKey] = None,
out_keys: Sequence[NestedKey] | None = None,
in_keys_inv: Sequence[NestedKey] | None = None,
out_keys_inv: Sequence[NestedKey] | None = None,
mode="mean_std",
):
if out_keys is None:
out_keys = in_keys
@ -43,7 +44,14 @@ class NormalizeTransform(Transform):
super().__init__(
in_keys=in_keys, out_keys=out_keys, in_keys_inv=in_keys_inv, out_keys_inv=out_keys_inv
)
self.mean_std = mean_std
self.stats = stats
assert mode in ["mean_std", "min_max"]
self.mode = mode
def _reset(self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase) -> TensorDictBase:
# _reset is called once when the environment reset to normalize the first observation
tensordict_reset = self._call(tensordict_reset)
return tensordict_reset
@dispatch(source="in_keys", dest="out_keys")
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
@ -54,9 +62,17 @@ class NormalizeTransform(Transform):
# TODO(rcadene): don't know how to do `inkey not in td`
if td.get(inkey, None) is None:
continue
mean = self.mean_std[inkey]["mean"]
std = self.mean_std[inkey]["std"]
if self.mode == "mean_std":
mean = self.stats[inkey]["mean"]
std = self.stats[inkey]["std"]
td[outkey] = (td[inkey] - mean) / (std + 1e-8)
else:
min = self.stats[inkey]["min"]
max = self.stats[inkey]["max"]
# normalize to [0,1]
td[outkey] = (td[inkey] - min) / (max - min)
# normalize to [-1, 1]
td[outkey] = td[outkey] * 2 - 1
return td
def _inv_call(self, td: TensorDictBase) -> TensorDictBase:
@ -64,7 +80,13 @@ class NormalizeTransform(Transform):
# TODO(rcadene): don't know how to do `inkey not in td`
if td.get(inkey, None) is None:
continue
mean = self.mean_std[inkey]["mean"]
std = self.mean_std[inkey]["std"]
if self.mode == "mean_std":
mean = self.stats[inkey]["mean"]
std = self.stats[inkey]["std"]
td[outkey] = td[inkey] * std + mean
else:
min = self.stats[inkey]["min"]
max = self.stats[inkey]["max"]
td[outkey] = (td[inkey] + 1) / 2
td[outkey] = td[outkey] * (max - min) + min
return td

View File

@ -1,51 +1,11 @@
import contextlib
import logging
import os
from pathlib import Path
import numpy as np
from omegaconf import OmegaConf
from termcolor import colored
def make_dir(dir_path):
"""Create directory if it does not already exist."""
with contextlib.suppress(OSError):
dir_path.mkdir(parents=True, exist_ok=True)
return dir_path
def print_run(cfg, reward=None):
"""Pretty-printing of run information. Call at start of training."""
prefix, color, attrs = " ", "green", ["bold"]
def limstr(s, maxlen=32):
return str(s[:maxlen]) + "..." if len(str(s)) > maxlen else s
def pprint(k, v):
print(
prefix + colored(f'{k.capitalize() + ":":<16}', color, attrs=attrs),
limstr(v),
)
kvs = [
("task", cfg.env.task),
("offline_steps", f"{cfg.offline_steps}"),
("online_steps", f"{cfg.online_steps}"),
("action_repeat", f"{cfg.env.action_repeat}"),
# ('observations', 'x'.join([str(s) for s in cfg.obs_shape])),
# ('actions', cfg.action_dim),
# ('experiment', cfg.exp_name),
]
if reward is not None:
kvs.append(("episode reward", colored(str(int(reward)), "white", attrs=["bold"])))
w = np.max([len(limstr(str(kv[1]))) for kv in kvs]) + 21
div = "-" * w
print(div)
for k, v in kvs:
pprint(k, v)
print(div)
def cfg_to_group(cfg, return_list=False):
"""Return a wandb-safe group name for logging. Optionally returns group name as list."""
# lst = [cfg.task, cfg.modality, re.sub("[^0-9a-zA-Z]+", "-", cfg.exp_name)]
@ -71,13 +31,12 @@ class Logger:
self._seed = cfg.seed
self._cfg = cfg
self._eval = []
print_run(cfg)
project = cfg.get("wandb", {}).get("project")
entity = cfg.get("wandb", {}).get("entity")
enable_wandb = cfg.get("wandb", {}).get("enable", False)
run_offline = not enable_wandb or not project or not entity
if run_offline:
print(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"]))
self._wandb = None
else:
os.environ["WANDB_SILENT"] = "true"
@ -134,7 +93,6 @@ class Logger:
self.save_buffer(buffer, identifier="buffer")
if self._wandb:
self._wandb.finish()
print_run(self._cfg, self._eval[-1][-1])
def log_dict(self, d, step, mode="train"):
assert mode in {"train", "eval"}
@ -144,5 +102,5 @@ class Logger:
def log_video(self, video, step, mode="train"):
assert mode in {"train", "eval"}
wandb_video = self._wandb.Video(video, fps=self.cfg.fps, format="mp4")
wandb_video = self._wandb.Video(video, fps=self._cfg.fps, format="mp4")
self._wandb.log({f"{mode}/video": wandb_video}, step=step)

View File

@ -1,20 +1,15 @@
import copy
import time
import einops
import hydra
import torch
import torch.nn as nn
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from diffusion_policy.model.common.lr_scheduler import get_scheduler
from diffusion_policy.model.vision.model_getter import get_resnet
from .diffusion_unet_image_policy import DiffusionUnetImagePolicy
from .multi_image_obs_encoder import MultiImageObsEncoder
FIRST_ACTION = 0
class DiffusionPolicy(nn.Module):
def __init__(
@ -42,8 +37,8 @@ class DiffusionPolicy(nn.Module):
super().__init__()
self.cfg = cfg
noise_scheduler = DDPMScheduler(**cfg_noise_scheduler)
rgb_model = get_resnet(**cfg_rgb_model)
noise_scheduler = hydra.utils.instantiate(cfg_noise_scheduler)
rgb_model = hydra.utils.instantiate(cfg_rgb_model)
obs_encoder = MultiImageObsEncoder(
rgb_model=rgb_model,
**cfg_obs_encoder,
@ -101,20 +96,17 @@ class DiffusionPolicy(nn.Module):
# TODO(rcadene): remove unused step_count
del step_count
# TODO(rcadene): remove unsqueeze hack...
if observation["image"].ndim == 3:
# TODO(rcadene): remove unsqueeze hack to add bsize=1
observation["image"] = observation["image"].unsqueeze(0)
observation["state"] = observation["state"].unsqueeze(0)
obs_dict = {
# TODO(rcadene): hack to add temporal dim
"image": einops.rearrange(observation["image"], "b c h w -> b 1 c h w"),
"agent_pos": einops.rearrange(observation["state"], "b c -> b 1 c"),
"image": observation["image"],
"agent_pos": observation["state"],
}
out = self.diffusion.predict_action(obs_dict)
# TODO(rcadene): add possibility to return >1 timestemps
action = out["action"].squeeze(0)[FIRST_ACTION]
action = out["action"].squeeze(0)
return action
def update(self, replay_buffer, step):
@ -133,16 +125,36 @@ class DiffusionPolicy(nn.Module):
# (t h) ... -> t h ...
batch = batch.reshape(num_slices, horizon) # .transpose(1, 0).contiguous()
# |-1|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14| timestamps: 16
# |o|o| observations: 2
# | |a|a|a|a|a|a|a|a| actions executed: 8
# |p|p|p|p|p|p|p|p|p|p|p| p| p| p| p| p| actions predicted: 16
# note: we predict the action needed to go from t=-1 to t=0 similarly to an inverse kinematic model
image = batch["observation", "image"]
state = batch["observation", "state"]
action = batch["action"]
assert image.shape[1] == horizon
assert state.shape[1] == horizon
assert action.shape[1] == horizon
if not (horizon == 16 and self.cfg.n_obs_steps == 2):
raise NotImplementedError()
# keep first 2 observations of the slice corresponding to t=[-1,0]
image = image[:, : self.cfg.n_obs_steps]
state = state[:, : self.cfg.n_obs_steps]
out = {
"obs": {
"image": batch["observation", "image"].to(self.device, non_blocking=True),
"agent_pos": batch["observation", "state"].to(self.device, non_blocking=True),
"image": image.to(self.device, non_blocking=True),
"agent_pos": state.to(self.device, non_blocking=True),
},
"action": batch["action"].to(self.device, non_blocking=True),
"action": action.to(self.device, non_blocking=True),
}
return out
batch = replay_buffer.sample(batch_size) if self.cfg.balanced_sampling else replay_buffer.sample()
batch = replay_buffer.sample(batch_size)
batch = process_batch(batch, self.cfg.horizon, num_slices)
data_s = time.time() - start_time

View File

@ -1,7 +1,7 @@
defaults:
- _self_
- env: simxarm
- policy: tdmpc
- env: pusht
- policy: diffusion
hydra:
run:
@ -21,6 +21,7 @@ save_buffer: false
train_steps: ???
fps: ???
n_action_steps: ???
env: ???
policy: ???

View File

@ -13,7 +13,7 @@ shape_meta:
shape: [2]
horizon: 16
n_obs_steps: 1 # TODO(rcadene): before 2
n_obs_steps: 2
n_action_steps: 8
n_latency_steps: 0
dataset_obs_steps: ${n_obs_steps}
@ -21,7 +21,7 @@ past_action_visible: False
keypoint_visible_rate: 1.0
obs_as_global_cond: True
eval_episodes: 50
eval_episodes: 1
eval_freq: 10000
save_freq: 100000
log_freq: 250
@ -40,8 +40,8 @@ policy:
num_inference_steps: 100
obs_as_global_cond: ${obs_as_global_cond}
# crop_shape: null
diffusion_step_embed_dim: 128
down_dims: [512, 1024, 2048]
diffusion_step_embed_dim: 256 # before 128
down_dims: [256, 512, 1024] # before [512, 1024, 2048]
kernel_size: 5
n_groups: 8
cond_predict_scale: True
@ -59,10 +59,10 @@ policy:
use_ema: true
lr_scheduler: cosine
lr_warmup_steps: 500
grad_clip_norm: 0
grad_clip_norm: 10
noise_scheduler:
# _target_: diffusers.schedulers.scheduling_ddpm.DDPMScheduler
_target_: diffusers.schedulers.scheduling_ddpm.DDPMScheduler
num_train_timesteps: 100
beta_start: 0.0001
beta_end: 0.02
@ -74,16 +74,16 @@ noise_scheduler:
obs_encoder:
# _target_: diffusion_policy.model.vision.multi_image_obs_encoder.MultiImageObsEncoder
shape_meta: ${shape_meta}
resize_shape: null
crop_shape: [76, 76]
# resize_shape: null
# crop_shape: [76, 76]
# constant center crop
random_crop: True
# random_crop: True
use_group_norm: True
share_rgb_model: False
imagenet_norm: False # TODO(rcadene): was set to True
imagenet_norm: True
rgb_model:
#_target_: diffusion_policy.model.vision.model_getter.get_resnet
_target_: diffusion_policy.model.vision.model_getter.get_resnet
name: resnet18
weights: null

View File

@ -1,5 +1,7 @@
# @package _global_
n_action_steps: 1
policy:
name: tdmpc

View File

@ -118,7 +118,7 @@ def eval(cfg: dict, out_dir=None):
offline_buffer = make_offline_buffer(cfg)
logging.info("make_env")
env = make_env(cfg, transform=offline_buffer.transform)
env = make_env(cfg, transform=offline_buffer._transform)
if cfg.policy.pretrained_model_path:
policy = make_policy(cfg)
@ -137,7 +137,7 @@ def eval(cfg: dict, out_dir=None):
save_video=True,
video_dir=Path(out_dir) / "eval",
fps=cfg.env.fps,
max_steps=cfg.env.episode_length,
max_steps=cfg.env.episode_length // cfg.n_action_steps,
num_episodes=cfg.eval_episodes,
)
print(metrics)

View File

@ -123,7 +123,6 @@ def train(cfg: dict, out_dir=None, job_name=None):
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_seed(cfg.seed)
logging.info(colored("Work dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
logging.info("make_offline_buffer")
offline_buffer = make_offline_buffer(cfg)
@ -153,6 +152,9 @@ def train(cfg: dict, out_dir=None, job_name=None):
logging.info("make_policy")
policy = make_policy(cfg)
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
td_policy = TensorDictModule(
policy,
in_keys=["observation", "step_count"],
@ -162,6 +164,16 @@ def train(cfg: dict, out_dir=None, job_name=None):
# log metrics to terminal and wandb
logger = Logger(out_dir, job_name, cfg)
logging.info(colored("Work dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})")
logging.info(f"{cfg.online_steps=}")
logging.info(f"{cfg.env.action_repeat=}")
logging.info(f"{offline_buffer.num_samples=} ({format_big_number(offline_buffer.num_samples)})")
logging.info(f"{offline_buffer.num_episodes=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
step = 0 # number of policy update
is_offline = True
@ -174,19 +186,23 @@ def train(cfg: dict, out_dir=None, job_name=None):
log_train_info(logger, train_info, step, cfg, offline_buffer, is_offline)
if step > 0 and step % cfg.eval_freq == 0:
logging.info(f"Eval policy at step {step}")
eval_info, first_video = eval_policy(
env,
td_policy,
num_episodes=cfg.eval_episodes,
max_steps=cfg.env.episode_length // cfg.n_action_steps,
return_first_video=True,
)
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
if cfg.wandb.enable:
logger.log_video(first_video, step, mode="eval")
logging.info("Resume training")
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
logging.info(f"Checkpoint model at step {step}")
logging.info(f"Checkpoint policy at step {step}")
logger.save_model(policy, identifier=step)
logging.info("Resume training")
step += 1
@ -200,11 +216,11 @@ def train(cfg: dict, out_dir=None, job_name=None):
# TODO: add configurable number of rollout? (default=1)
with torch.no_grad():
rollout = env.rollout(
max_steps=cfg.env.episode_length,
max_steps=cfg.env.episode_length // cfg.n_action_steps,
policy=td_policy,
auto_cast_to_device=True,
)
assert len(rollout) <= cfg.env.episode_length
assert len(rollout) <= cfg.env.episode_length // cfg.n_action_steps
# set same episode index for all time steps contained in this rollout
rollout["episode"] = torch.tensor([env_step] * len(rollout), dtype=torch.int)
online_buffer.extend(rollout)
@ -231,19 +247,23 @@ def train(cfg: dict, out_dir=None, job_name=None):
log_train_info(logger, train_info, step, cfg, offline_buffer, is_offline)
if step > 0 and step % cfg.eval_freq == 0:
logging.info(f"Eval policy at step {step}")
eval_info, first_video = eval_policy(
env,
td_policy,
num_episodes=cfg.eval_episodes,
max_steps=cfg.env.episode_length // cfg.n_action_steps,
return_first_video=True,
)
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
if cfg.wandb.enable:
logger.log_video(first_video, step, mode="eval")
logging.info("Resume training")
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
logging.info(f"Checkpoint model at step {step}")
logging.info(f"Checkpoint policy at step {step}")
logger.save_model(policy, identifier=step)
logging.info("Resume training")
step += 1
online_step += 1