split encoder for critic and actor
This commit is contained in:
parent
bae3b02928
commit
ee306e2f9b
|
@ -48,7 +48,7 @@ class SACConfig:
|
|||
critic_target_update_weight = 0.005
|
||||
utd_ratio = 2
|
||||
state_encoder_hidden_dim = 256
|
||||
latent_dim = 50
|
||||
latent_dim = 128
|
||||
target_entropy = None
|
||||
critic_network_kwargs = {
|
||||
"hidden_dims": [256, 256],
|
||||
|
|
|
@ -63,21 +63,31 @@ class SACPolicy(
|
|||
self.unnormalize_outputs = Unnormalize(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
encoder = SACObservationEncoder(config)
|
||||
encoder_critic = SACObservationEncoder(config)
|
||||
encoder_actor = SACObservationEncoder(config)
|
||||
# Define networks
|
||||
critic_nets = []
|
||||
for _ in range(config.num_critics):
|
||||
critic_net = Critic(encoder=encoder, network=MLP(**config.critic_network_kwargs))
|
||||
critic_net = Critic(
|
||||
encoder=encoder_critic,
|
||||
network=MLP(
|
||||
input_dim=encoder_critic.output_dim + config.output_shapes["action"][0],
|
||||
**config.critic_network_kwargs
|
||||
)
|
||||
)
|
||||
critic_nets.append(critic_net)
|
||||
|
||||
self.critic_ensemble = create_critic_ensemble(critic_nets, config.num_critics)
|
||||
self.critic_target = deepcopy(self.critic_ensemble)
|
||||
|
||||
self.actor = Policy(
|
||||
encoder=encoder,
|
||||
network=MLP(**config.actor_network_kwargs),
|
||||
encoder=encoder_actor,
|
||||
network=MLP(
|
||||
input_dim=encoder_actor.output_dim,
|
||||
**config.actor_network_kwargs
|
||||
),
|
||||
action_dim=config.output_shapes["action"][0],
|
||||
**config.policy_kwargs,
|
||||
**config.policy_kwargs
|
||||
)
|
||||
if config.target_entropy is None:
|
||||
config.target_entropy = -np.prod(config.output_shapes["action"][0]) # (-dim(A))
|
||||
|
@ -105,6 +115,22 @@ class SACPolicy(
|
|||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
return actions
|
||||
|
||||
def critic_forward(self, observations: dict[str, Tensor], actions: Tensor, use_target: bool = False) -> Tensor:
|
||||
"""Forward pass through a critic network ensemble
|
||||
|
||||
Args:
|
||||
observations: Dictionary of observations
|
||||
actions: Action tensor
|
||||
use_target: If True, use target critics, otherwise use ensemble critics
|
||||
|
||||
Returns:
|
||||
Tensor of Q-values from all critics
|
||||
"""
|
||||
critics = self.critic_target if use_target else self.critic_ensemble
|
||||
q_values = torch.stack([critic(observations, actions) for critic in critics])
|
||||
return q_values
|
||||
|
||||
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
|
||||
"""Run the batch through the model and compute the loss.
|
||||
|
||||
|
@ -112,7 +138,7 @@ class SACPolicy(
|
|||
"""
|
||||
batch = self.normalize_inputs(batch)
|
||||
# batch shape is (b, 2, ...) where index 1 returns the current observation and
|
||||
# the next observation for caluculating the right td index.
|
||||
# the next observation for calculating the right td index.
|
||||
actions = batch["action"][:, 0]
|
||||
rewards = batch["next.reward"][:, 0]
|
||||
observations = {}
|
||||
|
@ -132,7 +158,8 @@ class SACPolicy(
|
|||
action_preds, log_probs = self.actor(next_observations)
|
||||
|
||||
# 2- compute q targets
|
||||
q_targets = self.target_qs(next_observations, action_preds)
|
||||
q_targets = self.critic_forward(next_observations, action_preds, use_target=True)
|
||||
|
||||
# subsample critics to prevent overfitting if use high UTD (update to date)
|
||||
if self.config.num_subsample_critics is not None:
|
||||
indices = torch.randperm(self.config.num_critics)
|
||||
|
@ -140,23 +167,26 @@ class SACPolicy(
|
|||
q_targets = q_targets[indices]
|
||||
|
||||
# critics subsample size
|
||||
min_q = q_targets.min(dim=0)
|
||||
min_q, _ = q_targets.min(dim=0) # Get values from min operation
|
||||
|
||||
# compute td target
|
||||
td_target = (
|
||||
rewards + self.config.discount * min_q
|
||||
) # + self.config.discount * self.temperature() * log_probs # add entropy term
|
||||
td_target = rewards + self.config.discount * min_q #+ self.config.discount * self.temperature() * log_probs # add entropy term
|
||||
|
||||
# 3- compute predicted qs
|
||||
q_preds = self.critic_ensemble(observations, actions)
|
||||
q_preds = self.critic_forward(observations, actions, use_target=False)
|
||||
|
||||
# 4- Calculate loss
|
||||
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
|
||||
critics_loss = F.mse_loss(
|
||||
q_preds, # shape: [num_critics, batch_size]
|
||||
einops.repeat(td_target, "b -> e b", e=q_preds.shape[0]), # expand td_target to match q_preds shape
|
||||
reduction="none"
|
||||
).sum(0).mean()
|
||||
|
||||
# critics_loss = (
|
||||
# (
|
||||
# F.mse_loss(
|
||||
# q_preds,
|
||||
# einops.repeat(td_target, "t b -> e t b", e=q_preds.shape[0]),
|
||||
# einops.repeat(td_target, "b -> e b", e=q_preds.shape[0]),
|
||||
# reduction="none",
|
||||
# ).sum(0) # sum over ensemble
|
||||
# # `q_preds_ensemble` depends on the first observation and the actions.
|
||||
|
@ -165,23 +195,7 @@ class SACPolicy(
|
|||
# # q_targets depends on the reward and the next observations.
|
||||
# * ~batch["next.reward_is_pad"]
|
||||
# * ~batch["observation.state_is_pad"][1:]
|
||||
# )
|
||||
# .sum(0)
|
||||
# .mean()
|
||||
# )
|
||||
# 4- Calculate loss
|
||||
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
|
||||
critics_loss = (
|
||||
F.mse_loss(
|
||||
q_preds, # shape: [num_critics, batch_size]
|
||||
einops.repeat(
|
||||
td_target, "b -> e b", e=q_preds.shape[0]
|
||||
), # expand td_target to match q_preds shape
|
||||
reduction="none",
|
||||
)
|
||||
.sum(0)
|
||||
.mean()
|
||||
)
|
||||
# ).sum(0).mean()
|
||||
|
||||
# calculate actors loss
|
||||
# 1- temperature
|
||||
|
@ -189,18 +203,22 @@ class SACPolicy(
|
|||
# 2- get actions (batch_size, action_dim) and log probs (batch_size,)
|
||||
actions, log_probs = self.actor(observations)
|
||||
# 3- get q-value predictions
|
||||
with torch.no_grad():
|
||||
q_preds = self.critic_ensemble(observations, actions, return_type="mean")
|
||||
with torch.inference_mode():
|
||||
q_preds = self.critic_forward(observations, actions, use_target=False)
|
||||
actor_loss = (
|
||||
-(q_preds - temperature * log_probs).mean()
|
||||
* ~batch["observation.state_is_pad"][0]
|
||||
* ~batch["action_is_pad"]
|
||||
# * ~batch["observation.state_is_pad"][0]
|
||||
# * ~batch["action_is_pad"]
|
||||
).mean()
|
||||
|
||||
|
||||
# calculate temperature loss
|
||||
# 1- calculate entropy
|
||||
entropy = -log_probs.mean()
|
||||
temperature_loss = self.temp(lhs=entropy, rhs=self.config.target_entropy)
|
||||
temperature_loss = self.temperature(
|
||||
lhs=entropy,
|
||||
rhs=self.config.target_entropy
|
||||
)
|
||||
|
||||
loss = critics_loss + actor_loss + temperature_loss
|
||||
|
||||
|
@ -214,20 +232,24 @@ class SACPolicy(
|
|||
}
|
||||
|
||||
def update(self):
|
||||
self.critic_target.lerp_(self.critic_ensemble, self.config.critic_target_update_weight)
|
||||
# TODO: implement UTD update
|
||||
# First update only critics for utd_ratio-1 times
|
||||
#for critic_step in range(self.config.utd_ratio - 1):
|
||||
# only update critic and critic target
|
||||
# Then update critic, critic target, actor and temperature
|
||||
|
||||
# for target_param, param in zip(self.critic_target.parameters(), self.critic_ensemble.parameters()):
|
||||
# target_param.data.copy_(target_param.data * (1.0 - self.config.critic_target_update_weight) + param.data * self.critic_target_update_weight)
|
||||
|
||||
"""Update target networks with exponential moving average"""
|
||||
with torch.no_grad():
|
||||
for target_critic, critic in zip(self.critic_target, self.critic_ensemble, strict=False):
|
||||
for target_param, param in zip(target_critic.parameters(), critic.parameters(), strict=False):
|
||||
target_param.data.copy_(
|
||||
target_param.data * self.config.critic_target_update_weight +
|
||||
param.data * (1.0 - self.config.critic_target_update_weight)
|
||||
)
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
hidden_dims: list[int],
|
||||
activations: Callable[[torch.Tensor], torch.Tensor] | str = nn.SiLU(),
|
||||
activate_final: bool = False,
|
||||
|
@ -237,22 +259,28 @@ class MLP(nn.Module):
|
|||
self.activate_final = activate_final
|
||||
layers = []
|
||||
|
||||
for i, size in enumerate(hidden_dims):
|
||||
layers.append(nn.Linear(hidden_dims[i - 1] if i > 0 else hidden_dims[0], size))
|
||||
# First layer uses input_dim
|
||||
layers.append(nn.Linear(input_dim, hidden_dims[0]))
|
||||
|
||||
# Add activation after first layer
|
||||
if dropout_rate is not None and dropout_rate > 0:
|
||||
layers.append(nn.Dropout(p=dropout_rate))
|
||||
layers.append(nn.LayerNorm(hidden_dims[0]))
|
||||
layers.append(activations if isinstance(activations, nn.Module) else getattr(nn, activations)())
|
||||
|
||||
# Rest of the layers
|
||||
for i in range(1, len(hidden_dims)):
|
||||
layers.append(nn.Linear(hidden_dims[i-1], hidden_dims[i]))
|
||||
|
||||
if i + 1 < len(hidden_dims) or activate_final:
|
||||
if dropout_rate is not None and dropout_rate > 0:
|
||||
layers.append(nn.Dropout(p=dropout_rate))
|
||||
layers.append(nn.LayerNorm(size))
|
||||
layers.append(
|
||||
activations if isinstance(activations, nn.Module) else getattr(nn, activations)()
|
||||
)
|
||||
layers.append(nn.LayerNorm(hidden_dims[i]))
|
||||
layers.append(activations if isinstance(activations, nn.Module) else getattr(nn, activations)())
|
||||
|
||||
self.net = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x: torch.Tensor, train: bool = False) -> torch.Tensor:
|
||||
# in training mode or not. TODO: find better way to do this
|
||||
self.train(train)
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.net(x)
|
||||
|
||||
|
||||
|
@ -262,7 +290,7 @@ class Critic(nn.Module):
|
|||
encoder: Optional[nn.Module],
|
||||
network: nn.Module,
|
||||
init_final: Optional[float] = None,
|
||||
device: str = "cuda",
|
||||
device: str = "cuda"
|
||||
):
|
||||
super().__init__()
|
||||
self.device = torch.device(device)
|
||||
|
@ -287,10 +315,15 @@ class Critic(nn.Module):
|
|||
|
||||
self.to(self.device)
|
||||
|
||||
def forward(self, observations: torch.Tensor, actions: torch.Tensor, train: bool = False) -> torch.Tensor:
|
||||
self.train(train)
|
||||
|
||||
observations = observations.to(self.device)
|
||||
def forward(
|
||||
self,
|
||||
observations: dict[str, torch.Tensor],
|
||||
actions: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
# Move each tensor in observations to device
|
||||
observations = {
|
||||
k: v.to(self.device) for k, v in observations.items()
|
||||
}
|
||||
actions = actions.to(self.device)
|
||||
|
||||
obs_enc = observations if self.encoder is None else self.encoder(observations)
|
||||
|
@ -312,7 +345,7 @@ class Policy(nn.Module):
|
|||
fixed_std: Optional[torch.Tensor] = None,
|
||||
init_final: Optional[float] = None,
|
||||
use_tanh_squash: bool = False,
|
||||
device: str = "cuda",
|
||||
device: str = "cuda"
|
||||
):
|
||||
super().__init__()
|
||||
self.device = torch.device(device)
|
||||
|
@ -353,8 +386,9 @@ class Policy(nn.Module):
|
|||
self,
|
||||
observations: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
# Encode observations if encoder exists
|
||||
obs_enc = observations if self.encoder is not None else self.encoder(observations)
|
||||
obs_enc = observations if self.encoder is None else self.encoder(observations)
|
||||
|
||||
# Get network outputs
|
||||
outputs = self.network(obs_enc)
|
||||
|
@ -367,10 +401,10 @@ class Policy(nn.Module):
|
|||
log_std = torch.tanh(log_std)
|
||||
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
|
||||
else:
|
||||
stds = self.fixed_std.expand_as(means)
|
||||
log_std = self.fixed_std.expand_as(means)
|
||||
|
||||
# uses tahn activation function to squash the action to be in the range of [-1, 1]
|
||||
normal = torch.distributions.Normal(means, stds)
|
||||
normal = torch.distributions.Normal(means, torch.exp(log_std))
|
||||
x_t = normal.rsample() # for reparameterization trick (mean + std * N(0,1))
|
||||
log_probs = normal.log_prob(x_t)
|
||||
if self.use_tanh_squash:
|
||||
|
@ -384,8 +418,8 @@ class Policy(nn.Module):
|
|||
"""Get encoded features from observations"""
|
||||
observations = observations.to(self.device)
|
||||
if self.encoder is not None:
|
||||
with torch.no_grad():
|
||||
return self.encoder(observations, train=False)
|
||||
with torch.inference_mode():
|
||||
return self.encoder(observations)
|
||||
return observations
|
||||
|
||||
|
||||
|
@ -459,11 +493,22 @@ class SACObservationEncoder(nn.Module):
|
|||
feat.append(self.env_state_enc_layers(obs_dict["observation.environment_state"]))
|
||||
if "observation.state" in self.config.input_shapes:
|
||||
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
|
||||
# TODO(ke-wang): currently average over all features, concatenate all features maybe a better way
|
||||
return torch.stack(feat, dim=0).mean(0)
|
||||
|
||||
@property
|
||||
def output_dim(self) -> int:
|
||||
"""Returns the dimension of the encoder output"""
|
||||
return self.config.latent_dim
|
||||
|
||||
|
||||
class LagrangeMultiplier(nn.Module):
|
||||
def __init__(self, init_value: float = 1.0, constraint_shape: Sequence[int] = (), device: str = "cuda"):
|
||||
def __init__(
|
||||
self,
|
||||
init_value: float = 1.0,
|
||||
constraint_shape: Sequence[int] = (),
|
||||
device: str = "cuda"
|
||||
):
|
||||
super().__init__()
|
||||
self.device = torch.device(device)
|
||||
init_value = torch.log(torch.exp(torch.tensor(init_value, device=self.device)) - 1)
|
||||
|
@ -475,7 +520,11 @@ class LagrangeMultiplier(nn.Module):
|
|||
|
||||
self.to(self.device)
|
||||
|
||||
def forward(self, lhs: Optional[torch.Tensor] = None, rhs: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
def forward(
|
||||
self,
|
||||
lhs: Optional[torch.Tensor | float | int] = None,
|
||||
rhs: Optional[torch.Tensor | float | int] = None
|
||||
) -> torch.Tensor:
|
||||
# Get the multiplier value based on parameterization
|
||||
multiplier = torch.nn.functional.softplus(self.lagrange)
|
||||
|
||||
|
@ -483,13 +532,11 @@ class LagrangeMultiplier(nn.Module):
|
|||
if lhs is None:
|
||||
return multiplier
|
||||
|
||||
# Move inputs to device
|
||||
lhs = lhs.to(self.device)
|
||||
# Convert inputs to tensors and move to device
|
||||
lhs = torch.tensor(lhs, device=self.device) if not isinstance(lhs, torch.Tensor) else lhs.to(self.device)
|
||||
if rhs is not None:
|
||||
rhs = rhs.to(self.device)
|
||||
|
||||
# Use the multiplier to compute the Lagrange penalty
|
||||
if rhs is None:
|
||||
rhs = torch.tensor(rhs, device=self.device) if not isinstance(rhs, torch.Tensor) else rhs.to(self.device)
|
||||
else:
|
||||
rhs = torch.zeros_like(lhs, device=self.device)
|
||||
|
||||
diff = lhs - rhs
|
||||
|
@ -508,7 +555,6 @@ def create_critic_ensemble(critics: list[nn.Module], num_critics: int, device: s
|
|||
assert len(critics) == num_critics, f"Expected {num_critics} critics, got {len(critics)}"
|
||||
return nn.ModuleList(critics).to(device)
|
||||
|
||||
|
||||
# borrowed from tdmpc
|
||||
def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tensor) -> Tensor:
|
||||
"""Helper to temporarily flatten extra dims at the start of the image tensor.
|
||||
|
|
Loading…
Reference in New Issue