remove EMA from DP
This commit is contained in:
parent
d747195c57
commit
ee55d28afd
|
@ -118,15 +118,6 @@ class DiffusionConfig:
|
|||
# Inference
|
||||
num_inference_steps: int | None = None
|
||||
|
||||
# ---
|
||||
# TODO(alexander-soare): Remove these from the policy config.
|
||||
use_ema: bool = True
|
||||
ema_update_after_step: int = 0
|
||||
ema_min_alpha: float = 0.0
|
||||
ema_max_alpha: float = 0.9999
|
||||
ema_inv_gamma: float = 1.0
|
||||
ema_power: float = 0.75
|
||||
|
||||
def __post_init__(self):
|
||||
"""Input validation (not exhaustive)."""
|
||||
if not self.vision_backbone.startswith("resnet"):
|
||||
|
|
|
@ -3,12 +3,8 @@
|
|||
TODO(alexander-soare):
|
||||
- Remove reliance on Robomimic for SpatialSoftmax.
|
||||
- Remove reliance on diffusers for DDPMScheduler and LR scheduler.
|
||||
- Move EMA out of policy.
|
||||
- Consolidate _DiffusionUnetImagePolicy into DiffusionPolicy.
|
||||
- One more pass on comments and documentation.
|
||||
"""
|
||||
|
||||
import copy
|
||||
import math
|
||||
from collections import deque
|
||||
from typing import Callable
|
||||
|
@ -21,7 +17,6 @@ from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
|||
from huggingface_hub import PyTorchModelHubMixin
|
||||
from robomimic.models.base_nets import SpatialSoftmax
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
|
@ -71,13 +66,6 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
|
|||
|
||||
self.diffusion = DiffusionModel(config)
|
||||
|
||||
# TODO(alexander-soare): This should probably be managed outside of the policy class.
|
||||
self.ema_diffusion = None
|
||||
self.ema = None
|
||||
if self.config.use_ema:
|
||||
self.ema_diffusion = copy.deepcopy(self.diffusion)
|
||||
self.ema = DiffusionEMA(config, model=self.ema_diffusion)
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Clear observation and action queues. Should be called on `env.reset()`
|
||||
|
@ -109,9 +97,6 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
|
|||
Note that this means we require: `n_action_steps < horizon - n_obs_steps + 1`. Also, note that
|
||||
"horizon" may not the best name to describe what the variable actually means, because this period is
|
||||
actually measured from the first observation which (if `n_obs_steps` > 1) happened in the past.
|
||||
|
||||
Note: this method uses the ema model weights if self.training == False, otherwise the non-ema model
|
||||
weights.
|
||||
"""
|
||||
assert "observation.image" in batch
|
||||
assert "observation.state" in batch
|
||||
|
@ -123,10 +108,7 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
|
|||
if len(self._queues["action"]) == 0:
|
||||
# stack n latest observations from the queue
|
||||
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
|
||||
if not self.training and self.ema_diffusion is not None:
|
||||
actions = self.ema_diffusion.generate_actions(batch)
|
||||
else:
|
||||
actions = self.diffusion.generate_actions(batch)
|
||||
actions = self.diffusion.generate_actions(batch)
|
||||
|
||||
# TODO(rcadene): make above methods return output dictionary?
|
||||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
|
@ -612,67 +594,3 @@ class DiffusionConditionalResidualBlock1d(nn.Module):
|
|||
out = self.conv2(out)
|
||||
out = out + self.residual_conv(x)
|
||||
return out
|
||||
|
||||
|
||||
class DiffusionEMA:
|
||||
"""
|
||||
Exponential Moving Average of models weights
|
||||
"""
|
||||
|
||||
def __init__(self, config: DiffusionConfig, model: nn.Module):
|
||||
"""
|
||||
@crowsonkb's notes on EMA Warmup:
|
||||
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models
|
||||
you plan to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999
|
||||
at 1M steps), gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999
|
||||
at 10K steps, 0.9999 at 215.4k steps).
|
||||
Args:
|
||||
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
|
||||
power (float): Exponential factor of EMA warmup. Default: 2/3.
|
||||
min_alpha (float): The minimum EMA decay rate. Default: 0.
|
||||
"""
|
||||
|
||||
self.averaged_model = model
|
||||
self.averaged_model.eval()
|
||||
self.averaged_model.requires_grad_(False)
|
||||
|
||||
self.update_after_step = config.ema_update_after_step
|
||||
self.inv_gamma = config.ema_inv_gamma
|
||||
self.power = config.ema_power
|
||||
self.min_alpha = config.ema_min_alpha
|
||||
self.max_alpha = config.ema_max_alpha
|
||||
|
||||
self.alpha = 0.0
|
||||
self.optimization_step = 0
|
||||
|
||||
def get_decay(self, optimization_step):
|
||||
"""
|
||||
Compute the decay factor for the exponential moving average.
|
||||
"""
|
||||
step = max(0, optimization_step - self.update_after_step - 1)
|
||||
value = 1 - (1 + step / self.inv_gamma) ** -self.power
|
||||
|
||||
if step <= 0:
|
||||
return 0.0
|
||||
|
||||
return max(self.min_alpha, min(value, self.max_alpha))
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, new_model):
|
||||
self.alpha = self.get_decay(self.optimization_step)
|
||||
|
||||
for module, ema_module in zip(new_model.modules(), self.averaged_model.modules(), strict=True):
|
||||
# Iterate over immediate parameters only.
|
||||
for param, ema_param in zip(
|
||||
module.parameters(recurse=False), ema_module.parameters(recurse=False), strict=True
|
||||
):
|
||||
if isinstance(param, dict):
|
||||
raise RuntimeError("Dict parameter not supported")
|
||||
if isinstance(module, _BatchNorm) or not param.requires_grad:
|
||||
# Copy BatchNorm parameters, and non-trainable parameters directly.
|
||||
ema_param.copy_(param.to(dtype=ema_param.dtype).data)
|
||||
else:
|
||||
ema_param.mul_(self.alpha)
|
||||
ema_param.add_(param.data.to(dtype=ema_param.dtype), alpha=1 - self.alpha)
|
||||
|
||||
self.optimization_step += 1
|
||||
|
|
|
@ -91,12 +91,3 @@ policy:
|
|||
|
||||
# Inference
|
||||
num_inference_steps: 100
|
||||
|
||||
# ---
|
||||
# TODO(alexander-soare): Remove these from the policy config.
|
||||
use_ema: true
|
||||
ema_update_after_step: 0
|
||||
ema_min_alpha: 0.0
|
||||
ema_max_alpha: 0.9999
|
||||
ema_inv_gamma: 1.0
|
||||
ema_power: 0.75
|
||||
|
|
|
@ -121,7 +121,7 @@ def rollout(
|
|||
max_steps = env.call("_max_episode_steps")[0]
|
||||
progbar = trange(
|
||||
max_steps,
|
||||
desc=f"Running rollout with {max_steps} steps (maximum) per rollout",
|
||||
desc=f"Running rollout with at most {max_steps} steps",
|
||||
disable=not enable_progbar,
|
||||
leave=False,
|
||||
)
|
||||
|
|
|
@ -89,9 +89,6 @@ def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
|
|||
if lr_scheduler is not None:
|
||||
lr_scheduler.step()
|
||||
|
||||
if hasattr(policy, "ema") and policy.ema is not None:
|
||||
policy.ema.step(policy.diffusion)
|
||||
|
||||
if isinstance(policy, PolicyWithUpdate):
|
||||
# To possibly update an internal buffer (for instance an Exponential Moving Average like in TDMPC).
|
||||
policy.update()
|
||||
|
|
Loading…
Reference in New Issue