Use dataclass config for ACT
This commit is contained in:
parent
34f00753eb
commit
ef4bd9e25c
|
@ -1,60 +1,104 @@
|
|||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@dataclass
|
||||
class ActConfig:
|
||||
"""
|
||||
TODO(now): Document all variables
|
||||
TODO(now): Pick sensible defaults for a use case?
|
||||
"""Configuration class for the Action Chunking Transformers policy.
|
||||
|
||||
Defaults are configured for training on bimanual Aloha tasks like "insertion" or "transfer".
|
||||
|
||||
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
|
||||
Those are: `state_dim`, `action_dim` and `camera_names`.
|
||||
|
||||
Args:
|
||||
state_dim: Dimensionality of the observation state space (excluding images).
|
||||
action_dim: Dimensionality of the action space.
|
||||
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
|
||||
current step and additional steps going back).
|
||||
camera_names: The (unique) set of names for the cameras.
|
||||
chunk_size: The size of the action prediction "chunks" in units of environment steps.
|
||||
n_action_steps: The number of action steps to run in the environment for one invocation of the policy.
|
||||
This should be no greater than the chunk size. For example, if the chunk size size 100, you may
|
||||
set this to 50. This would mean that the model predicts 100 steps worth of actions, runs 50 in the
|
||||
environment, and throws the other 50 out.
|
||||
image_normalization_mean: Value to subtract from the input image pixels (inputs are assumed to be in
|
||||
[0, 1]) for normalization.
|
||||
image_normalization_std: Value by which to divide the input image pixels (after the mean has been
|
||||
subtracted).
|
||||
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
|
||||
use_pretrained_backbone: Whether the backbone should be initialized with ImageNet, pretrained weights
|
||||
from torchvision.
|
||||
replace_final_stride_with_dilation: Whether to replace the ResNet's final 2x2 stride with a dilated
|
||||
convolution.
|
||||
pre_norm: Whether to use "pre-norm" in the transformer blocks.
|
||||
d_model: The transformer blocks' main hidden dimension.
|
||||
n_heads: The number of heads to use in the transformer blocks' multi-head attention.
|
||||
dim_feedforward: The dimension to expand the transformer's hidden dimension to in the feed-forward
|
||||
layers.
|
||||
feedforward_activation: The activation to use in the transformer block's feed-forward layers.
|
||||
n_encoder_layers: The number of transformer layers to use for the transformer encoder.
|
||||
n_decoder_layers: The number of transformer layers to use for the transformer decoder.
|
||||
use_vae: Whether to use a variational objective during training. This introduces another transformer
|
||||
which is used as the VAE's encoder (not to be confused with the transformer encoder - see
|
||||
documentation in the policy class).
|
||||
latent_dim: The VAE's latent dimension.
|
||||
n_vae_encoder_layers: The number of transformer layers to use for the VAE's encoder.
|
||||
use_temporal_aggregation: Whether to blend the actions of multiple policy invocations for any given
|
||||
environment step.
|
||||
dropout: Dropout to use in the transformer layers (see code for details).
|
||||
kl_weight: The weight to use for the KL-divergence component of the loss if the variational objective
|
||||
is enabled. Loss is then calculated as: `reconstruction_loss + kl_weight * kld_loss`.
|
||||
"""
|
||||
|
||||
# Environment.
|
||||
state_dim: int
|
||||
action_dim: int
|
||||
state_dim: int = 14
|
||||
action_dim: int = 14
|
||||
|
||||
# Inputs / output structure.
|
||||
n_obs_steps: int
|
||||
camera_names: list[str]
|
||||
chunk_size: int
|
||||
n_action_steps: int
|
||||
n_obs_steps: int = 1
|
||||
camera_names: list[str] = field(default_factory=lambda: ["top"])
|
||||
chunk_size: int = 100
|
||||
n_action_steps: int = 100
|
||||
|
||||
# Vision preprocessing.
|
||||
image_normalization_mean: tuple[float, float, float]
|
||||
image_normalization_std: tuple[float, float, float]
|
||||
image_normalization_mean: tuple[float, float, float] = field(
|
||||
default_factory=lambda: [0.485, 0.456, 0.406]
|
||||
)
|
||||
image_normalization_std: tuple[float, float, float] = field(default_factory=lambda: [0.229, 0.224, 0.225])
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: str
|
||||
use_pretrained_backbone: bool
|
||||
replace_final_stride_with_dilation: int
|
||||
vision_backbone: str = "resnet18"
|
||||
use_pretrained_backbone: bool = True
|
||||
replace_final_stride_with_dilation: int = False
|
||||
# Transformer layers.
|
||||
pre_norm: bool
|
||||
d_model: int
|
||||
n_heads: int
|
||||
dim_feedforward: int
|
||||
feedforward_activation: str
|
||||
n_encoder_layers: int
|
||||
n_decoder_layers: int
|
||||
pre_norm: bool = False
|
||||
d_model: int = 512
|
||||
n_heads: int = 8
|
||||
dim_feedforward: int = 3200
|
||||
feedforward_activation: str = "relu"
|
||||
n_encoder_layers: int = 4
|
||||
n_decoder_layers: int = 1
|
||||
# VAE.
|
||||
use_vae: bool
|
||||
latent_dim: int
|
||||
n_vae_encoder_layers: int
|
||||
use_vae: bool = True
|
||||
latent_dim: int = 32
|
||||
n_vae_encoder_layers: int = 4
|
||||
|
||||
# Inference.
|
||||
use_temporal_aggregation: bool
|
||||
use_temporal_aggregation: bool = False
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: float
|
||||
kl_weight: float
|
||||
dropout: float = 0.1
|
||||
kl_weight: float = 10.0
|
||||
|
||||
# ---
|
||||
# TODO(alexander-soare): Remove these from the policy config.
|
||||
batch_size: int
|
||||
lr: float
|
||||
lr_backbone: float
|
||||
weight_decay: float
|
||||
grad_clip_norm: float
|
||||
utd: int
|
||||
batch_size: int = 8
|
||||
lr: float = 1e-5
|
||||
lr_backbone: float = 1e-5
|
||||
weight_decay: float = 1e-4
|
||||
grad_clip_norm: float = 10
|
||||
utd: int = 1
|
||||
|
||||
def __post_init__(self):
|
||||
"""Input validation."""
|
||||
|
@ -66,3 +110,5 @@ class ActConfig:
|
|||
raise ValueError(
|
||||
"The chunk size is the upper bound for the number of action steps per model invocation."
|
||||
)
|
||||
if self.camera_names != ["top"]:
|
||||
raise ValueError("For now, `camera_names` can only be ['top']")
|
||||
|
|
|
@ -54,7 +54,7 @@ policy:
|
|||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10
|
||||
kl_weight: 10.0
|
||||
|
||||
# ---
|
||||
# TODO(alexander-soare): Remove these from the policy config.
|
||||
|
|
|
@ -18,14 +18,14 @@ from lerobot.common.datasets.xarm import XarmDataset
|
|||
from lerobot.common.datasets.aloha import AlohaDataset
|
||||
from lerobot.common.datasets.pusht import PushtDataset
|
||||
|
||||
from lerobot.common.policies.act.policy import ActionChunkingTransformerPolicy
|
||||
from lerobot.common.policies.act.modeling_act import ActPolicy
|
||||
from lerobot.common.policies.diffusion.policy import DiffusionPolicy
|
||||
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
|
||||
|
||||
|
||||
def test_available():
|
||||
policy_classes = [
|
||||
ActionChunkingTransformerPolicy,
|
||||
ActPolicy,
|
||||
DiffusionPolicy,
|
||||
TDMPCPolicy,
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue