Remove EMA model from Diffusion Policy (#134)

This commit is contained in:
Alexander Soare 2024-05-05 11:26:12 +01:00 committed by GitHub
parent d747195c57
commit f3bba0270d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 21 additions and 117 deletions

View File

@ -118,15 +118,6 @@ class DiffusionConfig:
# Inference
num_inference_steps: int | None = None
# ---
# TODO(alexander-soare): Remove these from the policy config.
use_ema: bool = True
ema_update_after_step: int = 0
ema_min_alpha: float = 0.0
ema_max_alpha: float = 0.9999
ema_inv_gamma: float = 1.0
ema_power: float = 0.75
def __post_init__(self):
"""Input validation (not exhaustive)."""
if not self.vision_backbone.startswith("resnet"):

View File

@ -3,12 +3,8 @@
TODO(alexander-soare):
- Remove reliance on Robomimic for SpatialSoftmax.
- Remove reliance on diffusers for DDPMScheduler and LR scheduler.
- Move EMA out of policy.
- Consolidate _DiffusionUnetImagePolicy into DiffusionPolicy.
- One more pass on comments and documentation.
"""
import copy
import math
from collections import deque
from typing import Callable
@ -21,7 +17,6 @@ from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from huggingface_hub import PyTorchModelHubMixin
from robomimic.models.base_nets import SpatialSoftmax
from torch import Tensor, nn
from torch.nn.modules.batchnorm import _BatchNorm
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
@ -71,13 +66,6 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
self.diffusion = DiffusionModel(config)
# TODO(alexander-soare): This should probably be managed outside of the policy class.
self.ema_diffusion = None
self.ema = None
if self.config.use_ema:
self.ema_diffusion = copy.deepcopy(self.diffusion)
self.ema = DiffusionEMA(config, model=self.ema_diffusion)
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
@ -109,9 +97,6 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
Note that this means we require: `n_action_steps < horizon - n_obs_steps + 1`. Also, note that
"horizon" may not the best name to describe what the variable actually means, because this period is
actually measured from the first observation which (if `n_obs_steps` > 1) happened in the past.
Note: this method uses the ema model weights if self.training == False, otherwise the non-ema model
weights.
"""
assert "observation.image" in batch
assert "observation.state" in batch
@ -123,9 +108,6 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
if len(self._queues["action"]) == 0:
# stack n latest observations from the queue
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
if not self.training and self.ema_diffusion is not None:
actions = self.ema_diffusion.generate_actions(batch)
else:
actions = self.diffusion.generate_actions(batch)
# TODO(rcadene): make above methods return output dictionary?
@ -612,67 +594,3 @@ class DiffusionConditionalResidualBlock1d(nn.Module):
out = self.conv2(out)
out = out + self.residual_conv(x)
return out
class DiffusionEMA:
"""
Exponential Moving Average of models weights
"""
def __init__(self, config: DiffusionConfig, model: nn.Module):
"""
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models
you plan to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999
at 1M steps), gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999
at 10K steps, 0.9999 at 215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 2/3.
min_alpha (float): The minimum EMA decay rate. Default: 0.
"""
self.averaged_model = model
self.averaged_model.eval()
self.averaged_model.requires_grad_(False)
self.update_after_step = config.ema_update_after_step
self.inv_gamma = config.ema_inv_gamma
self.power = config.ema_power
self.min_alpha = config.ema_min_alpha
self.max_alpha = config.ema_max_alpha
self.alpha = 0.0
self.optimization_step = 0
def get_decay(self, optimization_step):
"""
Compute the decay factor for the exponential moving average.
"""
step = max(0, optimization_step - self.update_after_step - 1)
value = 1 - (1 + step / self.inv_gamma) ** -self.power
if step <= 0:
return 0.0
return max(self.min_alpha, min(value, self.max_alpha))
@torch.no_grad()
def step(self, new_model):
self.alpha = self.get_decay(self.optimization_step)
for module, ema_module in zip(new_model.modules(), self.averaged_model.modules(), strict=True):
# Iterate over immediate parameters only.
for param, ema_param in zip(
module.parameters(recurse=False), ema_module.parameters(recurse=False), strict=True
):
if isinstance(param, dict):
raise RuntimeError("Dict parameter not supported")
if isinstance(module, _BatchNorm) or not param.requires_grad:
# Copy BatchNorm parameters, and non-trainable parameters directly.
ema_param.copy_(param.to(dtype=ema_param.dtype).data)
else:
ema_param.mul_(self.alpha)
ema_param.add_(param.data.to(dtype=ema_param.dtype), alpha=1 - self.alpha)
self.optimization_step += 1

View File

@ -1,5 +1,9 @@
# @package _global_
# Defaults for training for the PushT dataset as per https://github.com/real-stanford/diffusion_policy.
# Note: We do not track EMA model weights as we discovered it does not improve the results. See
# https://github.com/huggingface/lerobot/pull/134 for more details.
seed: 100000
dataset_repo_id: lerobot/pusht
@ -91,12 +95,3 @@ policy:
# Inference
num_inference_steps: 100
# ---
# TODO(alexander-soare): Remove these from the policy config.
use_ema: true
ema_update_after_step: 0
ema_min_alpha: 0.0
ema_max_alpha: 0.9999
ema_inv_gamma: 1.0
ema_power: 0.75

View File

@ -121,7 +121,7 @@ def rollout(
max_steps = env.call("_max_episode_steps")[0]
progbar = trange(
max_steps,
desc=f"Running rollout with {max_steps} steps (maximum) per rollout",
desc=f"Running rollout with at most {max_steps} steps",
disable=not enable_progbar,
leave=False,
)

View File

@ -89,9 +89,6 @@ def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
if lr_scheduler is not None:
lr_scheduler.step()
if hasattr(policy, "ema") and policy.ema is not None:
policy.ema.step(policy.diffusion)
if isinstance(policy, PolicyWithUpdate):
# To possibly update an internal buffer (for instance an Exponential Moving Average like in TDMPC).
policy.update()

4
poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.1 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "absl-py"
@ -2407,7 +2407,6 @@ optional = false
python-versions = ">=3.9"
files = [
{file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"},
{file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"},
{file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"},
{file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"},
{file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"},
@ -2428,7 +2427,6 @@ files = [
{file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"},
{file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"},
{file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"},
{file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"},
{file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"},
{file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"},
{file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"},

View File

@ -88,14 +88,8 @@ def save_policy_to_safetensors(output_dir, env_name, policy_name, extra_override
if __name__ == "__main__":
env_policies = [
# ("xarm", "tdmpc", ["policy.n_action_repeats=2"]),
(
"pusht",
"diffusion",
["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"],
),
("aloha", "act", ["policy.n_action_steps=10"]),
]
# Instructions: include the policies that you want to save artifacts for here. Please make sure to revert
# your changes when you are done.
env_policies = []
for env, policy, extra_overrides in env_policies:
save_policy_to_safetensors("tests/data/save_policy_to_safetensors", env, policy, extra_overrides)

View File

@ -249,6 +249,17 @@ def test_normalize(insert_temporal_dim):
# pass if it's run on another platform due to floating point errors
@require_x86_64_kernel
def test_backward_compatibility(env_name, policy_name, extra_overrides):
"""
NOTE: If this test does not pass, and you have intentionally changed something in the policy:
1. Inspect the differences in policy outputs and make sure you can account for them. Your PR should
include a report on what changed and how that affected the outputs.
2. Go to the `if __name__ == "__main__"` block of `test/scripts/save_policy_to_safetensors.py` and
add the policies you want to update the test artifacts for.
3. Run `python test/scripts/save_policy_to_safetensors.py`. The test artifact should be updated.
4. Check that this test now passes.
5. Remember to restore `test/scripts/save_policy_to_safetensors.py` to its original state.
6. Remember to stage and commit the resulting changes to `tests/data`.
"""
env_policy_dir = Path("tests/data/save_policy_to_safetensors") / f"{env_name}_{policy_name}"
saved_output_dict = load_file(env_policy_dir / "output_dict.safetensors")
saved_grad_stats = load_file(env_policy_dir / "grad_stats.safetensors")