[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci
This commit is contained in:
pre-commit-ci[bot] 2025-04-09 07:02:42 +00:00
parent dcd0f5c519
commit f97bcd30e2
3 changed files with 11 additions and 11 deletions

View File

@ -38,7 +38,10 @@ from huggingface_hub import HfApi
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats, convert_stats_parallel from lerobot.common.datasets.v21.convert_stats import (
check_aggregate_stats,
convert_stats_parallel,
)
V20 = "v2.0" V20 = "v2.0"
V21 = "v2.1" V21 = "v2.1"

View File

@ -13,11 +13,10 @@
# limitations under the License. # limitations under the License.
from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ThreadPoolExecutor, as_completed
from multiprocessing import cpu_count
import numpy as np import numpy as np
from tqdm import tqdm from tqdm import tqdm
from multiprocessing import cpu_count
from concurrent.futures import ProcessPoolExecutor, as_completed
from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
@ -91,9 +90,7 @@ def convert_stats_parallel(dataset: LeRobotDataset, num_workers: int = 0):
if num_workers > 0: if num_workers > 0:
with ThreadPoolExecutor(max_workers=max_workers) as executor: with ThreadPoolExecutor(max_workers=max_workers) as executor:
for ep_idx in range(total_episodes): for ep_idx in range(total_episodes):
futures.append( futures.append(executor.submit(convert_episode_stats, dataset, ep_idx, True))
executor.submit(convert_episode_stats, dataset, ep_idx, True)
)
for future in tqdm(as_completed(futures), total=total_episodes, desc="Converting episodes stats"): for future in tqdm(as_completed(futures), total=total_episodes, desc="Converting episodes stats"):
ep_stats, ep_data = future.result() ep_stats, ep_data = future.result()
dataset.meta.episodes_stats[ep_idx] = ep_data dataset.meta.episodes_stats[ep_idx] = ep_data