From fbc66a082ba1a868da3172a678ba102b2e30aad8 Mon Sep 17 00:00:00 2001 From: Cadene Date: Fri, 8 Mar 2024 16:54:43 +0000 Subject: [PATCH] Copy past from act repo --- lerobot/common/policies/act/backbone.py | 115 +++++ lerobot/common/policies/act/detr_vae.py | 288 +++++++++++ lerobot/common/policies/act/policy.py | 138 +++++ .../common/policies/act/position_encoding.py | 104 ++++ lerobot/common/policies/act/transformer.py | 370 ++++++++++++++ lerobot/common/policies/act/utils.py | 477 ++++++++++++++++++ 6 files changed, 1492 insertions(+) create mode 100644 lerobot/common/policies/act/backbone.py create mode 100644 lerobot/common/policies/act/detr_vae.py create mode 100644 lerobot/common/policies/act/policy.py create mode 100644 lerobot/common/policies/act/position_encoding.py create mode 100644 lerobot/common/policies/act/transformer.py create mode 100644 lerobot/common/policies/act/utils.py diff --git a/lerobot/common/policies/act/backbone.py b/lerobot/common/policies/act/backbone.py new file mode 100644 index 00000000..6399d339 --- /dev/null +++ b/lerobot/common/policies/act/backbone.py @@ -0,0 +1,115 @@ +from typing import List + +import torch +import torchvision +from torch import nn +from torchvision.models._utils import IntermediateLayerGetter + +from .position_encoding import build_position_encoding +from .utils import NestedTensor, is_main_process + + +class FrozenBatchNorm2d(torch.nn.Module): + """ + BatchNorm2d where the batch statistics and the affine parameters are fixed. + + Copy-paste from torchvision.misc.ops with added eps before rqsrt, + without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101] + produce nans. + """ + + def __init__(self, n): + super().__init__() + self.register_buffer("weight", torch.ones(n)) + self.register_buffer("bias", torch.zeros(n)) + self.register_buffer("running_mean", torch.zeros(n)) + self.register_buffer("running_var", torch.ones(n)) + + def _load_from_state_dict( + self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ): + num_batches_tracked_key = prefix + "num_batches_tracked" + if num_batches_tracked_key in state_dict: + del state_dict[num_batches_tracked_key] + + super()._load_from_state_dict( + state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ) + + def forward(self, x): + # move reshapes to the beginning + # to make it fuser-friendly + w = self.weight.reshape(1, -1, 1, 1) + b = self.bias.reshape(1, -1, 1, 1) + rv = self.running_var.reshape(1, -1, 1, 1) + rm = self.running_mean.reshape(1, -1, 1, 1) + eps = 1e-5 + scale = w * (rv + eps).rsqrt() + bias = b - rm * scale + return x * scale + bias + + +class BackboneBase(nn.Module): + def __init__( + self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool + ): + super().__init__() + # for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this? + # if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: + # parameter.requires_grad_(False) + if return_interm_layers: + return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} + else: + return_layers = {"layer4": "0"} + self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) + self.num_channels = num_channels + + def forward(self, tensor): + xs = self.body(tensor) + return xs + # out: Dict[str, NestedTensor] = {} + # for name, x in xs.items(): + # m = tensor_list.mask + # assert m is not None + # mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] + # out[name] = NestedTensor(x, mask) + # return out + + +class Backbone(BackboneBase): + """ResNet backbone with frozen BatchNorm.""" + + def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool): + backbone = getattr(torchvision.models, name)( + replace_stride_with_dilation=[False, False, dilation], + pretrained=is_main_process(), + norm_layer=FrozenBatchNorm2d, + ) # pretrained # TODO do we want frozen batch_norm?? + num_channels = 512 if name in ("resnet18", "resnet34") else 2048 + super().__init__(backbone, train_backbone, num_channels, return_interm_layers) + + +class Joiner(nn.Sequential): + def __init__(self, backbone, position_embedding): + super().__init__(backbone, position_embedding) + + def forward(self, tensor_list: NestedTensor): + xs = self[0](tensor_list) + out: List[NestedTensor] = [] + pos = [] + for _, x in xs.items(): + out.append(x) + # position encoding + pos.append(self[1](x).to(x.dtype)) + + return out, pos + + +def build_backbone(args): + position_embedding = build_position_encoding(args) + train_backbone = args.lr_backbone > 0 + return_interm_layers = args.masks + backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation) + model = Joiner(backbone, position_embedding) + model.num_channels = backbone.num_channels + return model diff --git a/lerobot/common/policies/act/detr_vae.py b/lerobot/common/policies/act/detr_vae.py new file mode 100644 index 00000000..9be9eb40 --- /dev/null +++ b/lerobot/common/policies/act/detr_vae.py @@ -0,0 +1,288 @@ +import numpy as np +import torch +from torch import nn +from torch.autograd import Variable + +from .backbone import build_backbone +from .transformer import TransformerEncoder, TransformerEncoderLayer, build_transformer + + +def reparametrize(mu, logvar): + std = logvar.div(2).exp() + eps = Variable(std.data.new(std.size()).normal_()) + return mu + std * eps + + +def get_sinusoid_encoding_table(n_position, d_hid): + def get_position_angle_vec(position): + return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] + + sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) + sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i + sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 + + return torch.FloatTensor(sinusoid_table).unsqueeze(0) + + +class DETRVAE(nn.Module): + """This is the DETR module that performs object detection""" + + def __init__(self, backbones, transformer, encoder, state_dim, num_queries, camera_names): + """Initializes the model. + Parameters: + backbones: torch module of the backbone to be used. See backbone.py + transformer: torch module of the transformer architecture. See transformer.py + state_dim: robot state dimension of the environment + num_queries: number of object queries, ie detection slot. This is the maximal number of objects + DETR can detect in a single image. For COCO, we recommend 100 queries. + aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. + """ + super().__init__() + self.num_queries = num_queries + self.camera_names = camera_names + self.transformer = transformer + self.encoder = encoder + hidden_dim = transformer.d_model + self.action_head = nn.Linear(hidden_dim, state_dim) + self.is_pad_head = nn.Linear(hidden_dim, 1) + self.query_embed = nn.Embedding(num_queries, hidden_dim) + if backbones is not None: + self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1) + self.backbones = nn.ModuleList(backbones) + self.input_proj_robot_state = nn.Linear(14, hidden_dim) + else: + # input_dim = 14 + 7 # robot_state + env_state + self.input_proj_robot_state = nn.Linear(14, hidden_dim) + self.input_proj_env_state = nn.Linear(7, hidden_dim) + self.pos = torch.nn.Embedding(2, hidden_dim) + self.backbones = None + + # encoder extra parameters + self.latent_dim = 32 # final size of latent z # TODO tune + self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding + self.encoder_action_proj = nn.Linear(14, hidden_dim) # project action to embedding + self.encoder_joint_proj = nn.Linear(14, hidden_dim) # project qpos to embedding + self.latent_proj = nn.Linear( + hidden_dim, self.latent_dim * 2 + ) # project hidden state to latent std, var + self.register_buffer( + "pos_table", get_sinusoid_encoding_table(1 + 1 + num_queries, hidden_dim) + ) # [CLS], qpos, a_seq + + # decoder extra parameters + self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding + self.additional_pos_embed = nn.Embedding( + 2, hidden_dim + ) # learned position embedding for proprio and latent + + def forward(self, qpos, image, env_state, actions=None, is_pad=None): + """ + qpos: batch, qpos_dim + image: batch, num_cam, channel, height, width + env_state: None + actions: batch, seq, action_dim + """ + is_training = actions is not None # train or val + bs, _ = qpos.shape + ### Obtain latent z from action sequence + if is_training: + # project action sequence to embedding dim, and concat with a CLS token + action_embed = self.encoder_action_proj(actions) # (bs, seq, hidden_dim) + qpos_embed = self.encoder_joint_proj(qpos) # (bs, hidden_dim) + qpos_embed = torch.unsqueeze(qpos_embed, axis=1) # (bs, 1, hidden_dim) + cls_embed = self.cls_embed.weight # (1, hidden_dim) + cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim) + encoder_input = torch.cat( + [cls_embed, qpos_embed, action_embed], axis=1 + ) # (bs, seq+1, hidden_dim) + encoder_input = encoder_input.permute(1, 0, 2) # (seq+1, bs, hidden_dim) + # do not mask cls token + cls_joint_is_pad = torch.full((bs, 2), False).to(qpos.device) # False: not a padding + is_pad = torch.cat([cls_joint_is_pad, is_pad], axis=1) # (bs, seq+1) + # obtain position embedding + pos_embed = self.pos_table.clone().detach() + pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim) + # query model + encoder_output = self.encoder(encoder_input, pos=pos_embed, src_key_padding_mask=is_pad) + encoder_output = encoder_output[0] # take cls output only + latent_info = self.latent_proj(encoder_output) + mu = latent_info[:, : self.latent_dim] + logvar = latent_info[:, self.latent_dim :] + latent_sample = reparametrize(mu, logvar) + latent_input = self.latent_out_proj(latent_sample) + else: + mu = logvar = None + latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(qpos.device) + latent_input = self.latent_out_proj(latent_sample) + + if self.backbones is not None: + # Image observation features and position embeddings + all_cam_features = [] + all_cam_pos = [] + for cam_id, _ in enumerate(self.camera_names): + features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED + features = features[0] # take the last layer feature + pos = pos[0] + all_cam_features.append(self.input_proj(features)) + all_cam_pos.append(pos) + # proprioception features + proprio_input = self.input_proj_robot_state(qpos) + # fold camera dimension into width dimension + src = torch.cat(all_cam_features, axis=3) + pos = torch.cat(all_cam_pos, axis=3) + hs = self.transformer( + src, + None, + self.query_embed.weight, + pos, + latent_input, + proprio_input, + self.additional_pos_embed.weight, + )[0] + else: + qpos = self.input_proj_robot_state(qpos) + env_state = self.input_proj_env_state(env_state) + transformer_input = torch.cat([qpos, env_state], axis=1) # seq length = 2 + hs = self.transformer(transformer_input, None, self.query_embed.weight, self.pos.weight)[0] + a_hat = self.action_head(hs) + is_pad_hat = self.is_pad_head(hs) + return a_hat, is_pad_hat, [mu, logvar] + + +class CNNMLP(nn.Module): + def __init__(self, backbones, state_dim, camera_names): + """Initializes the model. + Parameters: + backbones: torch module of the backbone to be used. See backbone.py + transformer: torch module of the transformer architecture. See transformer.py + state_dim: robot state dimension of the environment + num_queries: number of object queries, ie detection slot. This is the maximal number of objects + DETR can detect in a single image. For COCO, we recommend 100 queries. + aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. + """ + super().__init__() + self.camera_names = camera_names + self.action_head = nn.Linear(1000, state_dim) # TODO add more + if backbones is not None: + self.backbones = nn.ModuleList(backbones) + backbone_down_projs = [] + for backbone in backbones: + down_proj = nn.Sequential( + nn.Conv2d(backbone.num_channels, 128, kernel_size=5), + nn.Conv2d(128, 64, kernel_size=5), + nn.Conv2d(64, 32, kernel_size=5), + ) + backbone_down_projs.append(down_proj) + self.backbone_down_projs = nn.ModuleList(backbone_down_projs) + + mlp_in_dim = 768 * len(backbones) + 14 + self.mlp = mlp(input_dim=mlp_in_dim, hidden_dim=1024, output_dim=14, hidden_depth=2) + else: + raise NotImplementedError + + def forward(self, qpos, image, env_state, actions=None): + """ + qpos: batch, qpos_dim + image: batch, num_cam, channel, height, width + env_state: None + actions: batch, seq, action_dim + """ + del env_state, actions + bs, _ = qpos.shape + # Image observation features and position embeddings + all_cam_features = [] + for cam_id, _ in enumerate(self.camera_names): + features, pos = self.backbones[cam_id](image[:, cam_id]) + features = features[0] # take the last layer feature + pos = pos[0] # not used + all_cam_features.append(self.backbone_down_projs[cam_id](features)) + # flatten everything + flattened_features = [] + for cam_feature in all_cam_features: + flattened_features.append(cam_feature.reshape([bs, -1])) + flattened_features = torch.cat(flattened_features, axis=1) # 768 each + features = torch.cat([flattened_features, qpos], axis=1) # qpos: 14 + a_hat = self.mlp(features) + return a_hat + + +def mlp(input_dim, hidden_dim, output_dim, hidden_depth): + if hidden_depth == 0: + mods = [nn.Linear(input_dim, output_dim)] + else: + mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)] + for _ in range(hidden_depth - 1): + mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)] + mods.append(nn.Linear(hidden_dim, output_dim)) + trunk = nn.Sequential(*mods) + return trunk + + +def build_encoder(args): + d_model = args.hidden_dim # 256 + dropout = args.dropout # 0.1 + nhead = args.nheads # 8 + dim_feedforward = args.dim_feedforward # 2048 + num_encoder_layers = args.enc_layers # 4 # TODO shared with VAE decoder + normalize_before = args.pre_norm # False + activation = "relu" + + encoder_layer = TransformerEncoderLayer( + d_model, nhead, dim_feedforward, dropout, activation, normalize_before + ) + encoder_norm = nn.LayerNorm(d_model) if normalize_before else None + encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) + + return encoder + + +def build(args): + state_dim = 14 # TODO hardcode + + # From state + # backbone = None # from state for now, no need for conv nets + # From image + backbones = [] + backbone = build_backbone(args) + backbones.append(backbone) + + transformer = build_transformer(args) + + encoder = build_encoder(args) + + model = DETRVAE( + backbones, + transformer, + encoder, + state_dim=state_dim, + num_queries=args.num_queries, + camera_names=args.camera_names, + ) + + n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) + print("number of parameters: {:.2f}M".format(n_parameters / 1e6)) + + return model + + +def build_cnnmlp(args): + state_dim = 14 # TODO hardcode + + # From state + # backbone = None # from state for now, no need for conv nets + # From image + backbones = [] + for _ in args.camera_names: + backbone = build_backbone(args) + backbones.append(backbone) + + model = CNNMLP( + backbones, + state_dim=state_dim, + camera_names=args.camera_names, + ) + + n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) + print("number of parameters: {:.2f}M".format(n_parameters / 1e6)) + + return model diff --git a/lerobot/common/policies/act/policy.py b/lerobot/common/policies/act/policy.py new file mode 100644 index 00000000..50aa3607 --- /dev/null +++ b/lerobot/common/policies/act/policy.py @@ -0,0 +1,138 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F # noqa: N812 +import torchvision.transforms as transforms + +from lerobot.common.policies.act.detr_vae import build + + +def build_act_model_and_optimizer(cfg): + model = build(cfg) + model.cuda() + + param_dicts = [ + {"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]}, + { + "params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad], + "lr": cfg.lr_backbone, + }, + ] + optimizer = torch.optim.AdamW(param_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay) + + return model, optimizer + + +# def build_CNNMLP_model_and_optimizer(cfg): +# parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()]) +# args = parser.parse_args() + +# for k, v in cfg.items(): +# setattr(args, k, v) + +# model = build_CNNMLP_model(args) +# model.cuda() + +# param_dicts = [ +# {"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]}, +# { +# "params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad], +# "lr": args.lr_backbone, +# }, +# ] +# optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, +# weight_decay=args.weight_decay) + +# return model, optimizer + + +def kl_divergence(mu, logvar): + batch_size = mu.size(0) + assert batch_size != 0 + if mu.data.ndimension() == 4: + mu = mu.view(mu.size(0), mu.size(1)) + if logvar.data.ndimension() == 4: + logvar = logvar.view(logvar.size(0), logvar.size(1)) + + klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()) + total_kld = klds.sum(1).mean(0, True) + dimension_wise_kld = klds.mean(0) + mean_kld = klds.mean(1).mean(0, True) + + return total_kld, dimension_wise_kld, mean_kld + + +class ACTPolicy(nn.Module): + def __init__(self, cfg): + super().__init__() + model, optimizer = build_act_model_and_optimizer(cfg) + self.model = model # CVAE decoder + self.optimizer = optimizer + self.kl_weight = cfg.kl_weight + print(f"KL Weight {self.kl_weight}") + + def __call__(self, qpos, image, actions=None, is_pad=None): + env_state = None + normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + image = normalize(image) + if actions is not None: # training time + actions = actions[:, : self.model.num_queries] + is_pad = is_pad[:, : self.model.num_queries] + + a_hat, is_pad_hat, (mu, logvar) = self.model(qpos, image, env_state, actions, is_pad) + total_kld, dim_wise_kld, mean_kld = kl_divergence(mu, logvar) + loss_dict = {} + all_l1 = F.l1_loss(actions, a_hat, reduction="none") + l1 = (all_l1 * ~is_pad.unsqueeze(-1)).mean() + loss_dict["l1"] = l1 + loss_dict["kl"] = total_kld[0] + loss_dict["loss"] = loss_dict["l1"] + loss_dict["kl"] * self.kl_weight + return loss_dict + else: # inference time + a_hat, _, (_, _) = self.model(qpos, image, env_state) # no action, sample from prior + return a_hat + + def configure_optimizers(self): + return self.optimizer + + +# class CNNMLPPolicy(nn.Module): +# def __init__(self, cfg): +# super().__init__() +# model, optimizer = build_CNNMLP_model_and_optimizer(cfg) +# self.model = model # decoder +# self.optimizer = optimizer + +# def __call__(self, qpos, image, actions=None, is_pad=None): +# env_state = None # TODO +# normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], +# std=[0.229, 0.224, 0.225]) +# image = normalize(image) +# if actions is not None: # training time +# actions = actions[:, 0] +# a_hat = self.model(qpos, image, env_state, actions) +# mse = F.mse_loss(actions, a_hat) +# loss_dict = dict() +# loss_dict['mse'] = mse +# loss_dict['loss'] = loss_dict['mse'] +# return loss_dict +# else: # inference time +# a_hat = self.model(qpos, image, env_state) # no action, sample from prior +# return a_hat + +# def configure_optimizers(self): +# return self.optimizer + +# def kl_divergence(mu, logvar): +# batch_size = mu.size(0) +# assert batch_size != 0 +# if mu.data.ndimension() == 4: +# mu = mu.view(mu.size(0), mu.size(1)) +# if logvar.data.ndimension() == 4: +# logvar = logvar.view(logvar.size(0), logvar.size(1)) + +# klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()) +# total_kld = klds.sum(1).mean(0, True) +# dimension_wise_kld = klds.mean(0) +# mean_kld = klds.mean(1).mean(0, True) + +# return total_kld, dimension_wise_kld, mean_kld diff --git a/lerobot/common/policies/act/position_encoding.py b/lerobot/common/policies/act/position_encoding.py new file mode 100644 index 00000000..b8107079 --- /dev/null +++ b/lerobot/common/policies/act/position_encoding.py @@ -0,0 +1,104 @@ +""" +Various positional encodings for the transformer. +""" +import math + +import IPython +import torch +from torch import nn + +from .utils import NestedTensor + +e = IPython.embed + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention is all you need paper, generalized to work on images. + """ + + def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): + super().__init__() + self.num_pos_feats = num_pos_feats + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, tensor): + x = tensor + # mask = tensor_list.mask + # assert mask is not None + # not_mask = ~mask + + not_mask = torch.ones_like(x[0, [0]]) + y_embed = not_mask.cumsum(1, dtype=torch.float32) + x_embed = not_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + + +class PositionEmbeddingLearned(nn.Module): + """ + Absolute pos embedding, learned. + """ + + def __init__(self, num_pos_feats=256): + super().__init__() + self.row_embed = nn.Embedding(50, num_pos_feats) + self.col_embed = nn.Embedding(50, num_pos_feats) + self.reset_parameters() + + def reset_parameters(self): + nn.init.uniform_(self.row_embed.weight) + nn.init.uniform_(self.col_embed.weight) + + def forward(self, tensor_list: NestedTensor): + x = tensor_list.tensors + h, w = x.shape[-2:] + i = torch.arange(w, device=x.device) + j = torch.arange(h, device=x.device) + x_emb = self.col_embed(i) + y_emb = self.row_embed(j) + pos = ( + torch.cat( + [ + x_emb.unsqueeze(0).repeat(h, 1, 1), + y_emb.unsqueeze(1).repeat(1, w, 1), + ], + dim=-1, + ) + .permute(2, 0, 1) + .unsqueeze(0) + .repeat(x.shape[0], 1, 1, 1) + ) + return pos + + +def build_position_encoding(args): + n_steps = args.hidden_dim // 2 + if args.position_embedding in ("v2", "sine"): + # TODO find a better way of exposing other arguments + position_embedding = PositionEmbeddingSine(n_steps, normalize=True) + elif args.position_embedding in ("v3", "learned"): + position_embedding = PositionEmbeddingLearned(n_steps) + else: + raise ValueError(f"not supported {args.position_embedding}") + + return position_embedding diff --git a/lerobot/common/policies/act/transformer.py b/lerobot/common/policies/act/transformer.py new file mode 100644 index 00000000..b2bd3685 --- /dev/null +++ b/lerobot/common/policies/act/transformer.py @@ -0,0 +1,370 @@ +""" +DETR Transformer class. + +Copy-paste from torch.nn.Transformer with modifications: + * positional encodings are passed in MHattention + * extra LN at the end of encoder is removed + * decoder returns a stack of activations from all decoding layers +""" +import copy +from typing import Optional + +import torch +import torch.nn.functional as F # noqa: N812 +from torch import Tensor, nn + + +class Transformer(nn.Module): + def __init__( + self, + d_model=512, + nhead=8, + num_encoder_layers=6, + num_decoder_layers=6, + dim_feedforward=2048, + dropout=0.1, + activation="relu", + normalize_before=False, + return_intermediate_dec=False, + ): + super().__init__() + + encoder_layer = TransformerEncoderLayer( + d_model, nhead, dim_feedforward, dropout, activation, normalize_before + ) + encoder_norm = nn.LayerNorm(d_model) if normalize_before else None + self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) + + decoder_layer = TransformerDecoderLayer( + d_model, nhead, dim_feedforward, dropout, activation, normalize_before + ) + decoder_norm = nn.LayerNorm(d_model) + self.decoder = TransformerDecoder( + decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec + ) + + self._reset_parameters() + + self.d_model = d_model + self.nhead = nhead + + def _reset_parameters(self): + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + + def forward( + self, + src, + mask, + query_embed, + pos_embed, + latent_input=None, + proprio_input=None, + additional_pos_embed=None, + ): + # TODO flatten only when input has H and W + if len(src.shape) == 4: # has H and W + # flatten NxCxHxW to HWxNxC + bs, c, h, w = src.shape + src = src.flatten(2).permute(2, 0, 1) + pos_embed = pos_embed.flatten(2).permute(2, 0, 1).repeat(1, bs, 1) + query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) + # mask = mask.flatten(1) + + additional_pos_embed = additional_pos_embed.unsqueeze(1).repeat(1, bs, 1) # seq, bs, dim + pos_embed = torch.cat([additional_pos_embed, pos_embed], axis=0) + + addition_input = torch.stack([latent_input, proprio_input], axis=0) + src = torch.cat([addition_input, src], axis=0) + else: + assert len(src.shape) == 3 + # flatten NxHWxC to HWxNxC + bs, hw, c = src.shape + src = src.permute(1, 0, 2) + pos_embed = pos_embed.unsqueeze(1).repeat(1, bs, 1) + query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) + + tgt = torch.zeros_like(query_embed) + memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) + hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed) + hs = hs.transpose(1, 2) + return hs + + +class TransformerEncoder(nn.Module): + def __init__(self, encoder_layer, num_layers, norm=None): + super().__init__() + self.layers = _get_clones(encoder_layer, num_layers) + self.num_layers = num_layers + self.norm = norm + + def forward( + self, + src, + mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + ): + output = src + + for layer in self.layers: + output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos) + + if self.norm is not None: + output = self.norm(output) + + return output + + +class TransformerDecoder(nn.Module): + def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): + super().__init__() + self.layers = _get_clones(decoder_layer, num_layers) + self.num_layers = num_layers + self.norm = norm + self.return_intermediate = return_intermediate + + def forward( + self, + tgt, + memory, + tgt_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + memory_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None, + ): + output = tgt + + intermediate = [] + + for layer in self.layers: + output = layer( + output, + memory, + tgt_mask=tgt_mask, + memory_mask=memory_mask, + tgt_key_padding_mask=tgt_key_padding_mask, + memory_key_padding_mask=memory_key_padding_mask, + pos=pos, + query_pos=query_pos, + ) + if self.return_intermediate: + intermediate.append(self.norm(output)) + + if self.norm is not None: + output = self.norm(output) + if self.return_intermediate: + intermediate.pop() + intermediate.append(output) + + if self.return_intermediate: + return torch.stack(intermediate) + + return output.unsqueeze(0) + + +class TransformerEncoderLayer(nn.Module): + def __init__( + self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False + ): + super().__init__() + self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) + # Implementation of Feedforward model + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_feedforward, d_model) + + self.norm1 = nn.LayerNorm(d_model) + self.norm2 = nn.LayerNorm(d_model) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + + self.activation = _get_activation_fn(activation) + self.normalize_before = normalize_before + + def with_pos_embed(self, tensor, pos: Optional[Tensor]): + return tensor if pos is None else tensor + pos + + def forward_post( + self, + src, + src_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + ): + q = k = self.with_pos_embed(src, pos) + src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] + src = src + self.dropout1(src2) + src = self.norm1(src) + src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) + src = src + self.dropout2(src2) + src = self.norm2(src) + return src + + def forward_pre( + self, + src, + src_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + ): + src2 = self.norm1(src) + q = k = self.with_pos_embed(src2, pos) + src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] + src = src + self.dropout1(src2) + src2 = self.norm2(src) + src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) + src = src + self.dropout2(src2) + return src + + def forward( + self, + src, + src_mask: Optional[Tensor] = None, + src_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + ): + if self.normalize_before: + return self.forward_pre(src, src_mask, src_key_padding_mask, pos) + return self.forward_post(src, src_mask, src_key_padding_mask, pos) + + +class TransformerDecoderLayer(nn.Module): + def __init__( + self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False + ): + super().__init__() + self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) + self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) + # Implementation of Feedforward model + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_feedforward, d_model) + + self.norm1 = nn.LayerNorm(d_model) + self.norm2 = nn.LayerNorm(d_model) + self.norm3 = nn.LayerNorm(d_model) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + self.dropout3 = nn.Dropout(dropout) + + self.activation = _get_activation_fn(activation) + self.normalize_before = normalize_before + + def with_pos_embed(self, tensor, pos: Optional[Tensor]): + return tensor if pos is None else tensor + pos + + def forward_post( + self, + tgt, + memory, + tgt_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + memory_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None, + ): + q = k = self.with_pos_embed(tgt, query_pos) + tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] + tgt = tgt + self.dropout1(tgt2) + tgt = self.norm1(tgt) + tgt2 = self.multihead_attn( + query=self.with_pos_embed(tgt, query_pos), + key=self.with_pos_embed(memory, pos), + value=memory, + attn_mask=memory_mask, + key_padding_mask=memory_key_padding_mask, + )[0] + tgt = tgt + self.dropout2(tgt2) + tgt = self.norm2(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) + tgt = tgt + self.dropout3(tgt2) + tgt = self.norm3(tgt) + return tgt + + def forward_pre( + self, + tgt, + memory, + tgt_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + memory_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None, + ): + tgt2 = self.norm1(tgt) + q = k = self.with_pos_embed(tgt2, query_pos) + tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] + tgt = tgt + self.dropout1(tgt2) + tgt2 = self.norm2(tgt) + tgt2 = self.multihead_attn( + query=self.with_pos_embed(tgt2, query_pos), + key=self.with_pos_embed(memory, pos), + value=memory, + attn_mask=memory_mask, + key_padding_mask=memory_key_padding_mask, + )[0] + tgt = tgt + self.dropout2(tgt2) + tgt2 = self.norm3(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) + tgt = tgt + self.dropout3(tgt2) + return tgt + + def forward( + self, + tgt, + memory, + tgt_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + memory_key_padding_mask: Optional[Tensor] = None, + pos: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None, + ): + if self.normalize_before: + return self.forward_pre( + tgt, + memory, + tgt_mask, + memory_mask, + tgt_key_padding_mask, + memory_key_padding_mask, + pos, + query_pos, + ) + return self.forward_post( + tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos + ) + + +def _get_clones(module, n): + return nn.ModuleList([copy.deepcopy(module) for _ in range(n)]) + + +def build_transformer(args): + return Transformer( + d_model=args.hidden_dim, + dropout=args.dropout, + nhead=args.nheads, + dim_feedforward=args.dim_feedforward, + num_encoder_layers=args.enc_layers, + num_decoder_layers=args.dec_layers, + normalize_before=args.pre_norm, + return_intermediate_dec=True, + ) + + +def _get_activation_fn(activation): + """Return an activation function given a string""" + if activation == "relu": + return F.relu + if activation == "gelu": + return F.gelu + if activation == "glu": + return F.glu + raise RuntimeError(f"activation should be relu/gelu, not {activation}.") diff --git a/lerobot/common/policies/act/utils.py b/lerobot/common/policies/act/utils.py new file mode 100644 index 00000000..2ce92094 --- /dev/null +++ b/lerobot/common/policies/act/utils.py @@ -0,0 +1,477 @@ +""" +Misc functions, including distributed helpers. + +Mostly copy-paste from torchvision references. +""" +import datetime +import os +import pickle +import subprocess +import time +from collections import defaultdict, deque +from typing import List, Optional + +import torch +import torch.distributed as dist + +# needed due to empty tensor bug in pytorch and torchvision 0.5 +import torchvision +from packaging import version +from torch import Tensor + +if version.parse(torchvision.__version__) < version.parse("0.7"): + from torchvision.ops import _new_empty_tensor + from torchvision.ops.misc import _output_size + + +class SmoothedValue: + """Track a series of values and provide access to smoothed values over a + window or the global series average. + """ + + def __init__(self, window_size=20, fmt=None): + if fmt is None: + fmt = "{median:.4f} ({global_avg:.4f})" + self.deque = deque(maxlen=window_size) + self.total = 0.0 + self.count = 0 + self.fmt = fmt + + def update(self, value, n=1): + self.deque.append(value) + self.count += n + self.total += value * n + + def synchronize_between_processes(self): + """ + Warning: does not synchronize the deque! + """ + if not is_dist_avail_and_initialized(): + return + t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") + dist.barrier() + dist.all_reduce(t) + t = t.tolist() + self.count = int(t[0]) + self.total = t[1] + + @property + def median(self): + d = torch.tensor(list(self.deque)) + return d.median().item() + + @property + def avg(self): + d = torch.tensor(list(self.deque), dtype=torch.float32) + return d.mean().item() + + @property + def global_avg(self): + return self.total / self.count + + @property + def max(self): + return max(self.deque) + + @property + def value(self): + return self.deque[-1] + + def __str__(self): + return self.fmt.format( + median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value + ) + + +def all_gather(data): + """ + Run all_gather on arbitrary picklable data (not necessarily tensors) + Args: + data: any picklable object + Returns: + list[data]: list of data gathered from each rank + """ + world_size = get_world_size() + if world_size == 1: + return [data] + + # serialized to a Tensor + buffer = pickle.dumps(data) + storage = torch.ByteStorage.from_buffer(buffer) + tensor = torch.ByteTensor(storage).to("cuda") + + # obtain Tensor size of each rank + local_size = torch.tensor([tensor.numel()], device="cuda") + size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] + dist.all_gather(size_list, local_size) + size_list = [int(size.item()) for size in size_list] + max_size = max(size_list) + + # receiving Tensor from all ranks + # we pad the tensor because torch all_gather does not support + # gathering tensors of different shapes + tensor_list = [] + for _ in size_list: + tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) + if local_size != max_size: + padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") + tensor = torch.cat((tensor, padding), dim=0) + dist.all_gather(tensor_list, tensor) + + data_list = [] + for size, tensor in zip(size_list, tensor_list, strict=False): + buffer = tensor.cpu().numpy().tobytes()[:size] + data_list.append(pickle.loads(buffer)) + + return data_list + + +def reduce_dict(input_dict, average=True): + """ + Args: + input_dict (dict): all the values will be reduced + average (bool): whether to do average or sum + Reduce the values in the dictionary from all processes so that all processes + have the averaged results. Returns a dict with the same fields as + input_dict, after reduction. + """ + world_size = get_world_size() + if world_size < 2: + return input_dict + with torch.no_grad(): + names = [] + values = [] + # sort the keys so that they are consistent across processes + for k in sorted(input_dict.keys()): + names.append(k) + values.append(input_dict[k]) + values = torch.stack(values, dim=0) + dist.all_reduce(values) + if average: + values /= world_size + reduced_dict = {k: v for k, v in zip(names, values, strict=False)} # noqa: C416 + return reduced_dict + + +class MetricLogger: + def __init__(self, delimiter="\t"): + self.meters = defaultdict(SmoothedValue) + self.delimiter = delimiter + + def update(self, **kwargs): + for k, v in kwargs.items(): + if isinstance(v, torch.Tensor): + v = v.item() + assert isinstance(v, (float, int)) + self.meters[k].update(v) + + def __getattr__(self, attr): + if attr in self.meters: + return self.meters[attr] + if attr in self.__dict__: + return self.__dict__[attr] + raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) + + def __str__(self): + loss_str = [] + for name, meter in self.meters.items(): + loss_str.append("{}: {}".format(name, str(meter))) + return self.delimiter.join(loss_str) + + def synchronize_between_processes(self): + for meter in self.meters.values(): + meter.synchronize_between_processes() + + def add_meter(self, name, meter): + self.meters[name] = meter + + def log_every(self, iterable, print_freq, header=None): + if not header: + header = "" + start_time = time.time() + end = time.time() + iter_time = SmoothedValue(fmt="{avg:.4f}") + data_time = SmoothedValue(fmt="{avg:.4f}") + space_fmt = ":" + str(len(str(len(iterable)))) + "d" + if torch.cuda.is_available(): + log_msg = self.delimiter.join( + [ + header, + "[{0" + space_fmt + "}/{1}]", + "eta: {eta}", + "{meters}", + "time: {time}", + "data: {data}", + "max mem: {memory:.0f}", + ] + ) + else: + log_msg = self.delimiter.join( + [ + header, + "[{0" + space_fmt + "}/{1}]", + "eta: {eta}", + "{meters}", + "time: {time}", + "data: {data}", + ] + ) + mega_b = 1024.0 * 1024.0 + for i, obj in enumerate(iterable): + data_time.update(time.time() - end) + yield obj + iter_time.update(time.time() - end) + if i % print_freq == 0 or i == len(iterable) - 1: + eta_seconds = iter_time.global_avg * (len(iterable) - i) + eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) + if torch.cuda.is_available(): + print( + log_msg.format( + i, + len(iterable), + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + memory=torch.cuda.max_memory_allocated() / mega_b, + ) + ) + else: + print( + log_msg.format( + i, + len(iterable), + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + ) + ) + end = time.time() + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print("{} Total time: {} ({:.4f} s / it)".format(header, total_time_str, total_time / len(iterable))) + + +def get_sha(): + cwd = os.path.dirname(os.path.abspath(__file__)) + + def _run(command): + return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() + + sha = "N/A" + diff = "clean" + branch = "N/A" + try: + sha = _run(["git", "rev-parse", "HEAD"]) + subprocess.check_output(["git", "diff"], cwd=cwd) + diff = _run(["git", "diff-index", "HEAD"]) + diff = "has uncommited changes" if diff else "clean" + branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) + except Exception: + pass + message = f"sha: {sha}, status: {diff}, branch: {branch}" + return message + + +def collate_fn(batch): + batch = list(zip(*batch, strict=False)) + batch[0] = nested_tensor_from_tensor_list(batch[0]) + return tuple(batch) + + +def _max_by_axis(the_list): + # type: (List[List[int]]) -> List[int] + maxes = the_list[0] + for sublist in the_list[1:]: + for index, item in enumerate(sublist): + maxes[index] = max(maxes[index], item) + return maxes + + +class NestedTensor: + def __init__(self, tensors, mask: Optional[Tensor]): + self.tensors = tensors + self.mask = mask + + def to(self, device): + # type: (Device) -> NestedTensor # noqa + cast_tensor = self.tensors.to(device) + mask = self.mask + if mask is not None: + assert mask is not None + cast_mask = mask.to(device) + else: + cast_mask = None + return NestedTensor(cast_tensor, cast_mask) + + def decompose(self): + return self.tensors, self.mask + + def __repr__(self): + return str(self.tensors) + + +def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): + # TODO make this more general + if tensor_list[0].ndim == 3: + if torchvision._is_tracing(): + # nested_tensor_from_tensor_list() does not export well to ONNX + # call _onnx_nested_tensor_from_tensor_list() instead + return _onnx_nested_tensor_from_tensor_list(tensor_list) + + # TODO make it support different-sized images + max_size = _max_by_axis([list(img.shape) for img in tensor_list]) + # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) + batch_shape = [len(tensor_list)] + max_size + b, c, h, w = batch_shape + dtype = tensor_list[0].dtype + device = tensor_list[0].device + tensor = torch.zeros(batch_shape, dtype=dtype, device=device) + mask = torch.ones((b, h, w), dtype=torch.bool, device=device) + for img, pad_img, m in zip(tensor_list, tensor, mask, strict=False): + pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) + m[: img.shape[1], : img.shape[2]] = False + else: + raise ValueError("not supported") + return NestedTensor(tensor, mask) + + +# _onnx_nested_tensor_from_tensor_list() is an implementation of +# nested_tensor_from_tensor_list() that is supported by ONNX tracing. +@torch.jit.unused +def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: + max_size = [] + for i in range(tensor_list[0].dim()): + max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to( + torch.int64 + ) + max_size.append(max_size_i) + max_size = tuple(max_size) + + # work around for + # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) + # m[: img.shape[1], :img.shape[2]] = False + # which is not yet supported in onnx + padded_imgs = [] + padded_masks = [] + for img in tensor_list: + padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape), strict=False)] + padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) + padded_imgs.append(padded_img) + + m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) + padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) + padded_masks.append(padded_mask.to(torch.bool)) + + tensor = torch.stack(padded_imgs) + mask = torch.stack(padded_masks) + + return NestedTensor(tensor, mask=mask) + + +def setup_for_distributed(is_master): + """ + This function disables printing when not in master process + """ + import builtins as __builtin__ + + builtin_print = __builtin__.print + + def print(*args, **kwargs): + force = kwargs.pop("force", False) + if is_master or force: + builtin_print(*args, **kwargs) + + __builtin__.print = print + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_world_size(): + if not is_dist_avail_and_initialized(): + return 1 + return dist.get_world_size() + + +def get_rank(): + if not is_dist_avail_and_initialized(): + return 0 + return dist.get_rank() + + +def is_main_process(): + return get_rank() == 0 + + +def save_on_master(*args, **kwargs): + if is_main_process(): + torch.save(*args, **kwargs) + + +def init_distributed_mode(args): + if "RANK" in os.environ and "WORLD_SIZE" in os.environ: + args.rank = int(os.environ["RANK"]) + args.world_size = int(os.environ["WORLD_SIZE"]) + args.gpu = int(os.environ["LOCAL_RANK"]) + elif "SLURM_PROCID" in os.environ: + args.rank = int(os.environ["SLURM_PROCID"]) + args.gpu = args.rank % torch.cuda.device_count() + else: + print("Not using distributed mode") + args.distributed = False + return + + args.distributed = True + + torch.cuda.set_device(args.gpu) + args.dist_backend = "nccl" + print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) + torch.distributed.init_process_group( + backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank + ) + torch.distributed.barrier() + setup_for_distributed(args.rank == 0) + + +@torch.no_grad() +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + if target.numel() == 0: + return [torch.zeros([], device=output.device)] + maxk = max(topk) + batch_size = target.size(0) + + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + + res = [] + for k in topk: + correct_k = correct[:k].view(-1).float().sum(0) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): + # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor + """ + Equivalent to nn.functional.interpolate, but with support for empty batch sizes. + This will eventually be supported natively by PyTorch, and this + class can go away. + """ + if version.parse(torchvision.__version__) < version.parse("0.7"): + if input.numel() > 0: + return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) + + output_shape = _output_size(2, input, size, scale_factor) + output_shape = list(input.shape[:-2]) + list(output_shape) + return _new_empty_tensor(input, output_shape) + else: + return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)