Copy past from act repo
This commit is contained in:
parent
603455e313
commit
fbc66a082b
|
@ -0,0 +1,115 @@
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
from torch import nn
|
||||||
|
from torchvision.models._utils import IntermediateLayerGetter
|
||||||
|
|
||||||
|
from .position_encoding import build_position_encoding
|
||||||
|
from .utils import NestedTensor, is_main_process
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenBatchNorm2d(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
||||||
|
|
||||||
|
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
||||||
|
without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101]
|
||||||
|
produce nans.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, n):
|
||||||
|
super().__init__()
|
||||||
|
self.register_buffer("weight", torch.ones(n))
|
||||||
|
self.register_buffer("bias", torch.zeros(n))
|
||||||
|
self.register_buffer("running_mean", torch.zeros(n))
|
||||||
|
self.register_buffer("running_var", torch.ones(n))
|
||||||
|
|
||||||
|
def _load_from_state_dict(
|
||||||
|
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||||
|
):
|
||||||
|
num_batches_tracked_key = prefix + "num_batches_tracked"
|
||||||
|
if num_batches_tracked_key in state_dict:
|
||||||
|
del state_dict[num_batches_tracked_key]
|
||||||
|
|
||||||
|
super()._load_from_state_dict(
|
||||||
|
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# move reshapes to the beginning
|
||||||
|
# to make it fuser-friendly
|
||||||
|
w = self.weight.reshape(1, -1, 1, 1)
|
||||||
|
b = self.bias.reshape(1, -1, 1, 1)
|
||||||
|
rv = self.running_var.reshape(1, -1, 1, 1)
|
||||||
|
rm = self.running_mean.reshape(1, -1, 1, 1)
|
||||||
|
eps = 1e-5
|
||||||
|
scale = w * (rv + eps).rsqrt()
|
||||||
|
bias = b - rm * scale
|
||||||
|
return x * scale + bias
|
||||||
|
|
||||||
|
|
||||||
|
class BackboneBase(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
# for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this?
|
||||||
|
# if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
|
||||||
|
# parameter.requires_grad_(False)
|
||||||
|
if return_interm_layers:
|
||||||
|
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
||||||
|
else:
|
||||||
|
return_layers = {"layer4": "0"}
|
||||||
|
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
||||||
|
self.num_channels = num_channels
|
||||||
|
|
||||||
|
def forward(self, tensor):
|
||||||
|
xs = self.body(tensor)
|
||||||
|
return xs
|
||||||
|
# out: Dict[str, NestedTensor] = {}
|
||||||
|
# for name, x in xs.items():
|
||||||
|
# m = tensor_list.mask
|
||||||
|
# assert m is not None
|
||||||
|
# mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
||||||
|
# out[name] = NestedTensor(x, mask)
|
||||||
|
# return out
|
||||||
|
|
||||||
|
|
||||||
|
class Backbone(BackboneBase):
|
||||||
|
"""ResNet backbone with frozen BatchNorm."""
|
||||||
|
|
||||||
|
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
|
||||||
|
backbone = getattr(torchvision.models, name)(
|
||||||
|
replace_stride_with_dilation=[False, False, dilation],
|
||||||
|
pretrained=is_main_process(),
|
||||||
|
norm_layer=FrozenBatchNorm2d,
|
||||||
|
) # pretrained # TODO do we want frozen batch_norm??
|
||||||
|
num_channels = 512 if name in ("resnet18", "resnet34") else 2048
|
||||||
|
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
|
||||||
|
|
||||||
|
|
||||||
|
class Joiner(nn.Sequential):
|
||||||
|
def __init__(self, backbone, position_embedding):
|
||||||
|
super().__init__(backbone, position_embedding)
|
||||||
|
|
||||||
|
def forward(self, tensor_list: NestedTensor):
|
||||||
|
xs = self[0](tensor_list)
|
||||||
|
out: List[NestedTensor] = []
|
||||||
|
pos = []
|
||||||
|
for _, x in xs.items():
|
||||||
|
out.append(x)
|
||||||
|
# position encoding
|
||||||
|
pos.append(self[1](x).to(x.dtype))
|
||||||
|
|
||||||
|
return out, pos
|
||||||
|
|
||||||
|
|
||||||
|
def build_backbone(args):
|
||||||
|
position_embedding = build_position_encoding(args)
|
||||||
|
train_backbone = args.lr_backbone > 0
|
||||||
|
return_interm_layers = args.masks
|
||||||
|
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
|
||||||
|
model = Joiner(backbone, position_embedding)
|
||||||
|
model.num_channels = backbone.num_channels
|
||||||
|
return model
|
|
@ -0,0 +1,288 @@
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.autograd import Variable
|
||||||
|
|
||||||
|
from .backbone import build_backbone
|
||||||
|
from .transformer import TransformerEncoder, TransformerEncoderLayer, build_transformer
|
||||||
|
|
||||||
|
|
||||||
|
def reparametrize(mu, logvar):
|
||||||
|
std = logvar.div(2).exp()
|
||||||
|
eps = Variable(std.data.new(std.size()).normal_())
|
||||||
|
return mu + std * eps
|
||||||
|
|
||||||
|
|
||||||
|
def get_sinusoid_encoding_table(n_position, d_hid):
|
||||||
|
def get_position_angle_vec(position):
|
||||||
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
||||||
|
|
||||||
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
||||||
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
||||||
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
||||||
|
|
||||||
|
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
||||||
|
|
||||||
|
|
||||||
|
class DETRVAE(nn.Module):
|
||||||
|
"""This is the DETR module that performs object detection"""
|
||||||
|
|
||||||
|
def __init__(self, backbones, transformer, encoder, state_dim, num_queries, camera_names):
|
||||||
|
"""Initializes the model.
|
||||||
|
Parameters:
|
||||||
|
backbones: torch module of the backbone to be used. See backbone.py
|
||||||
|
transformer: torch module of the transformer architecture. See transformer.py
|
||||||
|
state_dim: robot state dimension of the environment
|
||||||
|
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
||||||
|
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
||||||
|
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.num_queries = num_queries
|
||||||
|
self.camera_names = camera_names
|
||||||
|
self.transformer = transformer
|
||||||
|
self.encoder = encoder
|
||||||
|
hidden_dim = transformer.d_model
|
||||||
|
self.action_head = nn.Linear(hidden_dim, state_dim)
|
||||||
|
self.is_pad_head = nn.Linear(hidden_dim, 1)
|
||||||
|
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
||||||
|
if backbones is not None:
|
||||||
|
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
||||||
|
self.backbones = nn.ModuleList(backbones)
|
||||||
|
self.input_proj_robot_state = nn.Linear(14, hidden_dim)
|
||||||
|
else:
|
||||||
|
# input_dim = 14 + 7 # robot_state + env_state
|
||||||
|
self.input_proj_robot_state = nn.Linear(14, hidden_dim)
|
||||||
|
self.input_proj_env_state = nn.Linear(7, hidden_dim)
|
||||||
|
self.pos = torch.nn.Embedding(2, hidden_dim)
|
||||||
|
self.backbones = None
|
||||||
|
|
||||||
|
# encoder extra parameters
|
||||||
|
self.latent_dim = 32 # final size of latent z # TODO tune
|
||||||
|
self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding
|
||||||
|
self.encoder_action_proj = nn.Linear(14, hidden_dim) # project action to embedding
|
||||||
|
self.encoder_joint_proj = nn.Linear(14, hidden_dim) # project qpos to embedding
|
||||||
|
self.latent_proj = nn.Linear(
|
||||||
|
hidden_dim, self.latent_dim * 2
|
||||||
|
) # project hidden state to latent std, var
|
||||||
|
self.register_buffer(
|
||||||
|
"pos_table", get_sinusoid_encoding_table(1 + 1 + num_queries, hidden_dim)
|
||||||
|
) # [CLS], qpos, a_seq
|
||||||
|
|
||||||
|
# decoder extra parameters
|
||||||
|
self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding
|
||||||
|
self.additional_pos_embed = nn.Embedding(
|
||||||
|
2, hidden_dim
|
||||||
|
) # learned position embedding for proprio and latent
|
||||||
|
|
||||||
|
def forward(self, qpos, image, env_state, actions=None, is_pad=None):
|
||||||
|
"""
|
||||||
|
qpos: batch, qpos_dim
|
||||||
|
image: batch, num_cam, channel, height, width
|
||||||
|
env_state: None
|
||||||
|
actions: batch, seq, action_dim
|
||||||
|
"""
|
||||||
|
is_training = actions is not None # train or val
|
||||||
|
bs, _ = qpos.shape
|
||||||
|
### Obtain latent z from action sequence
|
||||||
|
if is_training:
|
||||||
|
# project action sequence to embedding dim, and concat with a CLS token
|
||||||
|
action_embed = self.encoder_action_proj(actions) # (bs, seq, hidden_dim)
|
||||||
|
qpos_embed = self.encoder_joint_proj(qpos) # (bs, hidden_dim)
|
||||||
|
qpos_embed = torch.unsqueeze(qpos_embed, axis=1) # (bs, 1, hidden_dim)
|
||||||
|
cls_embed = self.cls_embed.weight # (1, hidden_dim)
|
||||||
|
cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim)
|
||||||
|
encoder_input = torch.cat(
|
||||||
|
[cls_embed, qpos_embed, action_embed], axis=1
|
||||||
|
) # (bs, seq+1, hidden_dim)
|
||||||
|
encoder_input = encoder_input.permute(1, 0, 2) # (seq+1, bs, hidden_dim)
|
||||||
|
# do not mask cls token
|
||||||
|
cls_joint_is_pad = torch.full((bs, 2), False).to(qpos.device) # False: not a padding
|
||||||
|
is_pad = torch.cat([cls_joint_is_pad, is_pad], axis=1) # (bs, seq+1)
|
||||||
|
# obtain position embedding
|
||||||
|
pos_embed = self.pos_table.clone().detach()
|
||||||
|
pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim)
|
||||||
|
# query model
|
||||||
|
encoder_output = self.encoder(encoder_input, pos=pos_embed, src_key_padding_mask=is_pad)
|
||||||
|
encoder_output = encoder_output[0] # take cls output only
|
||||||
|
latent_info = self.latent_proj(encoder_output)
|
||||||
|
mu = latent_info[:, : self.latent_dim]
|
||||||
|
logvar = latent_info[:, self.latent_dim :]
|
||||||
|
latent_sample = reparametrize(mu, logvar)
|
||||||
|
latent_input = self.latent_out_proj(latent_sample)
|
||||||
|
else:
|
||||||
|
mu = logvar = None
|
||||||
|
latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(qpos.device)
|
||||||
|
latent_input = self.latent_out_proj(latent_sample)
|
||||||
|
|
||||||
|
if self.backbones is not None:
|
||||||
|
# Image observation features and position embeddings
|
||||||
|
all_cam_features = []
|
||||||
|
all_cam_pos = []
|
||||||
|
for cam_id, _ in enumerate(self.camera_names):
|
||||||
|
features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED
|
||||||
|
features = features[0] # take the last layer feature
|
||||||
|
pos = pos[0]
|
||||||
|
all_cam_features.append(self.input_proj(features))
|
||||||
|
all_cam_pos.append(pos)
|
||||||
|
# proprioception features
|
||||||
|
proprio_input = self.input_proj_robot_state(qpos)
|
||||||
|
# fold camera dimension into width dimension
|
||||||
|
src = torch.cat(all_cam_features, axis=3)
|
||||||
|
pos = torch.cat(all_cam_pos, axis=3)
|
||||||
|
hs = self.transformer(
|
||||||
|
src,
|
||||||
|
None,
|
||||||
|
self.query_embed.weight,
|
||||||
|
pos,
|
||||||
|
latent_input,
|
||||||
|
proprio_input,
|
||||||
|
self.additional_pos_embed.weight,
|
||||||
|
)[0]
|
||||||
|
else:
|
||||||
|
qpos = self.input_proj_robot_state(qpos)
|
||||||
|
env_state = self.input_proj_env_state(env_state)
|
||||||
|
transformer_input = torch.cat([qpos, env_state], axis=1) # seq length = 2
|
||||||
|
hs = self.transformer(transformer_input, None, self.query_embed.weight, self.pos.weight)[0]
|
||||||
|
a_hat = self.action_head(hs)
|
||||||
|
is_pad_hat = self.is_pad_head(hs)
|
||||||
|
return a_hat, is_pad_hat, [mu, logvar]
|
||||||
|
|
||||||
|
|
||||||
|
class CNNMLP(nn.Module):
|
||||||
|
def __init__(self, backbones, state_dim, camera_names):
|
||||||
|
"""Initializes the model.
|
||||||
|
Parameters:
|
||||||
|
backbones: torch module of the backbone to be used. See backbone.py
|
||||||
|
transformer: torch module of the transformer architecture. See transformer.py
|
||||||
|
state_dim: robot state dimension of the environment
|
||||||
|
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
||||||
|
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
||||||
|
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.camera_names = camera_names
|
||||||
|
self.action_head = nn.Linear(1000, state_dim) # TODO add more
|
||||||
|
if backbones is not None:
|
||||||
|
self.backbones = nn.ModuleList(backbones)
|
||||||
|
backbone_down_projs = []
|
||||||
|
for backbone in backbones:
|
||||||
|
down_proj = nn.Sequential(
|
||||||
|
nn.Conv2d(backbone.num_channels, 128, kernel_size=5),
|
||||||
|
nn.Conv2d(128, 64, kernel_size=5),
|
||||||
|
nn.Conv2d(64, 32, kernel_size=5),
|
||||||
|
)
|
||||||
|
backbone_down_projs.append(down_proj)
|
||||||
|
self.backbone_down_projs = nn.ModuleList(backbone_down_projs)
|
||||||
|
|
||||||
|
mlp_in_dim = 768 * len(backbones) + 14
|
||||||
|
self.mlp = mlp(input_dim=mlp_in_dim, hidden_dim=1024, output_dim=14, hidden_depth=2)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def forward(self, qpos, image, env_state, actions=None):
|
||||||
|
"""
|
||||||
|
qpos: batch, qpos_dim
|
||||||
|
image: batch, num_cam, channel, height, width
|
||||||
|
env_state: None
|
||||||
|
actions: batch, seq, action_dim
|
||||||
|
"""
|
||||||
|
del env_state, actions
|
||||||
|
bs, _ = qpos.shape
|
||||||
|
# Image observation features and position embeddings
|
||||||
|
all_cam_features = []
|
||||||
|
for cam_id, _ in enumerate(self.camera_names):
|
||||||
|
features, pos = self.backbones[cam_id](image[:, cam_id])
|
||||||
|
features = features[0] # take the last layer feature
|
||||||
|
pos = pos[0] # not used
|
||||||
|
all_cam_features.append(self.backbone_down_projs[cam_id](features))
|
||||||
|
# flatten everything
|
||||||
|
flattened_features = []
|
||||||
|
for cam_feature in all_cam_features:
|
||||||
|
flattened_features.append(cam_feature.reshape([bs, -1]))
|
||||||
|
flattened_features = torch.cat(flattened_features, axis=1) # 768 each
|
||||||
|
features = torch.cat([flattened_features, qpos], axis=1) # qpos: 14
|
||||||
|
a_hat = self.mlp(features)
|
||||||
|
return a_hat
|
||||||
|
|
||||||
|
|
||||||
|
def mlp(input_dim, hidden_dim, output_dim, hidden_depth):
|
||||||
|
if hidden_depth == 0:
|
||||||
|
mods = [nn.Linear(input_dim, output_dim)]
|
||||||
|
else:
|
||||||
|
mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)]
|
||||||
|
for _ in range(hidden_depth - 1):
|
||||||
|
mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)]
|
||||||
|
mods.append(nn.Linear(hidden_dim, output_dim))
|
||||||
|
trunk = nn.Sequential(*mods)
|
||||||
|
return trunk
|
||||||
|
|
||||||
|
|
||||||
|
def build_encoder(args):
|
||||||
|
d_model = args.hidden_dim # 256
|
||||||
|
dropout = args.dropout # 0.1
|
||||||
|
nhead = args.nheads # 8
|
||||||
|
dim_feedforward = args.dim_feedforward # 2048
|
||||||
|
num_encoder_layers = args.enc_layers # 4 # TODO shared with VAE decoder
|
||||||
|
normalize_before = args.pre_norm # False
|
||||||
|
activation = "relu"
|
||||||
|
|
||||||
|
encoder_layer = TransformerEncoderLayer(
|
||||||
|
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||||
|
)
|
||||||
|
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
||||||
|
encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
||||||
|
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def build(args):
|
||||||
|
state_dim = 14 # TODO hardcode
|
||||||
|
|
||||||
|
# From state
|
||||||
|
# backbone = None # from state for now, no need for conv nets
|
||||||
|
# From image
|
||||||
|
backbones = []
|
||||||
|
backbone = build_backbone(args)
|
||||||
|
backbones.append(backbone)
|
||||||
|
|
||||||
|
transformer = build_transformer(args)
|
||||||
|
|
||||||
|
encoder = build_encoder(args)
|
||||||
|
|
||||||
|
model = DETRVAE(
|
||||||
|
backbones,
|
||||||
|
transformer,
|
||||||
|
encoder,
|
||||||
|
state_dim=state_dim,
|
||||||
|
num_queries=args.num_queries,
|
||||||
|
camera_names=args.camera_names,
|
||||||
|
)
|
||||||
|
|
||||||
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||||
|
print("number of parameters: {:.2f}M".format(n_parameters / 1e6))
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def build_cnnmlp(args):
|
||||||
|
state_dim = 14 # TODO hardcode
|
||||||
|
|
||||||
|
# From state
|
||||||
|
# backbone = None # from state for now, no need for conv nets
|
||||||
|
# From image
|
||||||
|
backbones = []
|
||||||
|
for _ in args.camera_names:
|
||||||
|
backbone = build_backbone(args)
|
||||||
|
backbones.append(backbone)
|
||||||
|
|
||||||
|
model = CNNMLP(
|
||||||
|
backbones,
|
||||||
|
state_dim=state_dim,
|
||||||
|
camera_names=args.camera_names,
|
||||||
|
)
|
||||||
|
|
||||||
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||||
|
print("number of parameters: {:.2f}M".format(n_parameters / 1e6))
|
||||||
|
|
||||||
|
return model
|
|
@ -0,0 +1,138 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F # noqa: N812
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
|
||||||
|
from lerobot.common.policies.act.detr_vae import build
|
||||||
|
|
||||||
|
|
||||||
|
def build_act_model_and_optimizer(cfg):
|
||||||
|
model = build(cfg)
|
||||||
|
model.cuda()
|
||||||
|
|
||||||
|
param_dicts = [
|
||||||
|
{"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
|
||||||
|
{
|
||||||
|
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
|
||||||
|
"lr": cfg.lr_backbone,
|
||||||
|
},
|
||||||
|
]
|
||||||
|
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay)
|
||||||
|
|
||||||
|
return model, optimizer
|
||||||
|
|
||||||
|
|
||||||
|
# def build_CNNMLP_model_and_optimizer(cfg):
|
||||||
|
# parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
|
||||||
|
# args = parser.parse_args()
|
||||||
|
|
||||||
|
# for k, v in cfg.items():
|
||||||
|
# setattr(args, k, v)
|
||||||
|
|
||||||
|
# model = build_CNNMLP_model(args)
|
||||||
|
# model.cuda()
|
||||||
|
|
||||||
|
# param_dicts = [
|
||||||
|
# {"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
|
||||||
|
# {
|
||||||
|
# "params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
|
||||||
|
# "lr": args.lr_backbone,
|
||||||
|
# },
|
||||||
|
# ]
|
||||||
|
# optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
|
||||||
|
# weight_decay=args.weight_decay)
|
||||||
|
|
||||||
|
# return model, optimizer
|
||||||
|
|
||||||
|
|
||||||
|
def kl_divergence(mu, logvar):
|
||||||
|
batch_size = mu.size(0)
|
||||||
|
assert batch_size != 0
|
||||||
|
if mu.data.ndimension() == 4:
|
||||||
|
mu = mu.view(mu.size(0), mu.size(1))
|
||||||
|
if logvar.data.ndimension() == 4:
|
||||||
|
logvar = logvar.view(logvar.size(0), logvar.size(1))
|
||||||
|
|
||||||
|
klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
|
||||||
|
total_kld = klds.sum(1).mean(0, True)
|
||||||
|
dimension_wise_kld = klds.mean(0)
|
||||||
|
mean_kld = klds.mean(1).mean(0, True)
|
||||||
|
|
||||||
|
return total_kld, dimension_wise_kld, mean_kld
|
||||||
|
|
||||||
|
|
||||||
|
class ACTPolicy(nn.Module):
|
||||||
|
def __init__(self, cfg):
|
||||||
|
super().__init__()
|
||||||
|
model, optimizer = build_act_model_and_optimizer(cfg)
|
||||||
|
self.model = model # CVAE decoder
|
||||||
|
self.optimizer = optimizer
|
||||||
|
self.kl_weight = cfg.kl_weight
|
||||||
|
print(f"KL Weight {self.kl_weight}")
|
||||||
|
|
||||||
|
def __call__(self, qpos, image, actions=None, is_pad=None):
|
||||||
|
env_state = None
|
||||||
|
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
|
image = normalize(image)
|
||||||
|
if actions is not None: # training time
|
||||||
|
actions = actions[:, : self.model.num_queries]
|
||||||
|
is_pad = is_pad[:, : self.model.num_queries]
|
||||||
|
|
||||||
|
a_hat, is_pad_hat, (mu, logvar) = self.model(qpos, image, env_state, actions, is_pad)
|
||||||
|
total_kld, dim_wise_kld, mean_kld = kl_divergence(mu, logvar)
|
||||||
|
loss_dict = {}
|
||||||
|
all_l1 = F.l1_loss(actions, a_hat, reduction="none")
|
||||||
|
l1 = (all_l1 * ~is_pad.unsqueeze(-1)).mean()
|
||||||
|
loss_dict["l1"] = l1
|
||||||
|
loss_dict["kl"] = total_kld[0]
|
||||||
|
loss_dict["loss"] = loss_dict["l1"] + loss_dict["kl"] * self.kl_weight
|
||||||
|
return loss_dict
|
||||||
|
else: # inference time
|
||||||
|
a_hat, _, (_, _) = self.model(qpos, image, env_state) # no action, sample from prior
|
||||||
|
return a_hat
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
return self.optimizer
|
||||||
|
|
||||||
|
|
||||||
|
# class CNNMLPPolicy(nn.Module):
|
||||||
|
# def __init__(self, cfg):
|
||||||
|
# super().__init__()
|
||||||
|
# model, optimizer = build_CNNMLP_model_and_optimizer(cfg)
|
||||||
|
# self.model = model # decoder
|
||||||
|
# self.optimizer = optimizer
|
||||||
|
|
||||||
|
# def __call__(self, qpos, image, actions=None, is_pad=None):
|
||||||
|
# env_state = None # TODO
|
||||||
|
# normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
||||||
|
# std=[0.229, 0.224, 0.225])
|
||||||
|
# image = normalize(image)
|
||||||
|
# if actions is not None: # training time
|
||||||
|
# actions = actions[:, 0]
|
||||||
|
# a_hat = self.model(qpos, image, env_state, actions)
|
||||||
|
# mse = F.mse_loss(actions, a_hat)
|
||||||
|
# loss_dict = dict()
|
||||||
|
# loss_dict['mse'] = mse
|
||||||
|
# loss_dict['loss'] = loss_dict['mse']
|
||||||
|
# return loss_dict
|
||||||
|
# else: # inference time
|
||||||
|
# a_hat = self.model(qpos, image, env_state) # no action, sample from prior
|
||||||
|
# return a_hat
|
||||||
|
|
||||||
|
# def configure_optimizers(self):
|
||||||
|
# return self.optimizer
|
||||||
|
|
||||||
|
# def kl_divergence(mu, logvar):
|
||||||
|
# batch_size = mu.size(0)
|
||||||
|
# assert batch_size != 0
|
||||||
|
# if mu.data.ndimension() == 4:
|
||||||
|
# mu = mu.view(mu.size(0), mu.size(1))
|
||||||
|
# if logvar.data.ndimension() == 4:
|
||||||
|
# logvar = logvar.view(logvar.size(0), logvar.size(1))
|
||||||
|
|
||||||
|
# klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
|
||||||
|
# total_kld = klds.sum(1).mean(0, True)
|
||||||
|
# dimension_wise_kld = klds.mean(0)
|
||||||
|
# mean_kld = klds.mean(1).mean(0, True)
|
||||||
|
|
||||||
|
# return total_kld, dimension_wise_kld, mean_kld
|
|
@ -0,0 +1,104 @@
|
||||||
|
"""
|
||||||
|
Various positional encodings for the transformer.
|
||||||
|
"""
|
||||||
|
import math
|
||||||
|
|
||||||
|
import IPython
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from .utils import NestedTensor
|
||||||
|
|
||||||
|
e = IPython.embed
|
||||||
|
|
||||||
|
|
||||||
|
class PositionEmbeddingSine(nn.Module):
|
||||||
|
"""
|
||||||
|
This is a more standard version of the position embedding, very similar to the one
|
||||||
|
used by the Attention is all you need paper, generalized to work on images.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
||||||
|
super().__init__()
|
||||||
|
self.num_pos_feats = num_pos_feats
|
||||||
|
self.temperature = temperature
|
||||||
|
self.normalize = normalize
|
||||||
|
if scale is not None and normalize is False:
|
||||||
|
raise ValueError("normalize should be True if scale is passed")
|
||||||
|
if scale is None:
|
||||||
|
scale = 2 * math.pi
|
||||||
|
self.scale = scale
|
||||||
|
|
||||||
|
def forward(self, tensor):
|
||||||
|
x = tensor
|
||||||
|
# mask = tensor_list.mask
|
||||||
|
# assert mask is not None
|
||||||
|
# not_mask = ~mask
|
||||||
|
|
||||||
|
not_mask = torch.ones_like(x[0, [0]])
|
||||||
|
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
||||||
|
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
||||||
|
if self.normalize:
|
||||||
|
eps = 1e-6
|
||||||
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
||||||
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
||||||
|
|
||||||
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
||||||
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
||||||
|
|
||||||
|
pos_x = x_embed[:, :, :, None] / dim_t
|
||||||
|
pos_y = y_embed[:, :, :, None] / dim_t
|
||||||
|
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||||
|
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||||
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
||||||
|
return pos
|
||||||
|
|
||||||
|
|
||||||
|
class PositionEmbeddingLearned(nn.Module):
|
||||||
|
"""
|
||||||
|
Absolute pos embedding, learned.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, num_pos_feats=256):
|
||||||
|
super().__init__()
|
||||||
|
self.row_embed = nn.Embedding(50, num_pos_feats)
|
||||||
|
self.col_embed = nn.Embedding(50, num_pos_feats)
|
||||||
|
self.reset_parameters()
|
||||||
|
|
||||||
|
def reset_parameters(self):
|
||||||
|
nn.init.uniform_(self.row_embed.weight)
|
||||||
|
nn.init.uniform_(self.col_embed.weight)
|
||||||
|
|
||||||
|
def forward(self, tensor_list: NestedTensor):
|
||||||
|
x = tensor_list.tensors
|
||||||
|
h, w = x.shape[-2:]
|
||||||
|
i = torch.arange(w, device=x.device)
|
||||||
|
j = torch.arange(h, device=x.device)
|
||||||
|
x_emb = self.col_embed(i)
|
||||||
|
y_emb = self.row_embed(j)
|
||||||
|
pos = (
|
||||||
|
torch.cat(
|
||||||
|
[
|
||||||
|
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
||||||
|
y_emb.unsqueeze(1).repeat(1, w, 1),
|
||||||
|
],
|
||||||
|
dim=-1,
|
||||||
|
)
|
||||||
|
.permute(2, 0, 1)
|
||||||
|
.unsqueeze(0)
|
||||||
|
.repeat(x.shape[0], 1, 1, 1)
|
||||||
|
)
|
||||||
|
return pos
|
||||||
|
|
||||||
|
|
||||||
|
def build_position_encoding(args):
|
||||||
|
n_steps = args.hidden_dim // 2
|
||||||
|
if args.position_embedding in ("v2", "sine"):
|
||||||
|
# TODO find a better way of exposing other arguments
|
||||||
|
position_embedding = PositionEmbeddingSine(n_steps, normalize=True)
|
||||||
|
elif args.position_embedding in ("v3", "learned"):
|
||||||
|
position_embedding = PositionEmbeddingLearned(n_steps)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"not supported {args.position_embedding}")
|
||||||
|
|
||||||
|
return position_embedding
|
|
@ -0,0 +1,370 @@
|
||||||
|
"""
|
||||||
|
DETR Transformer class.
|
||||||
|
|
||||||
|
Copy-paste from torch.nn.Transformer with modifications:
|
||||||
|
* positional encodings are passed in MHattention
|
||||||
|
* extra LN at the end of encoder is removed
|
||||||
|
* decoder returns a stack of activations from all decoding layers
|
||||||
|
"""
|
||||||
|
import copy
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F # noqa: N812
|
||||||
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
|
||||||
|
class Transformer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model=512,
|
||||||
|
nhead=8,
|
||||||
|
num_encoder_layers=6,
|
||||||
|
num_decoder_layers=6,
|
||||||
|
dim_feedforward=2048,
|
||||||
|
dropout=0.1,
|
||||||
|
activation="relu",
|
||||||
|
normalize_before=False,
|
||||||
|
return_intermediate_dec=False,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
encoder_layer = TransformerEncoderLayer(
|
||||||
|
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||||
|
)
|
||||||
|
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
||||||
|
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
||||||
|
|
||||||
|
decoder_layer = TransformerDecoderLayer(
|
||||||
|
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||||
|
)
|
||||||
|
decoder_norm = nn.LayerNorm(d_model)
|
||||||
|
self.decoder = TransformerDecoder(
|
||||||
|
decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec
|
||||||
|
)
|
||||||
|
|
||||||
|
self._reset_parameters()
|
||||||
|
|
||||||
|
self.d_model = d_model
|
||||||
|
self.nhead = nhead
|
||||||
|
|
||||||
|
def _reset_parameters(self):
|
||||||
|
for p in self.parameters():
|
||||||
|
if p.dim() > 1:
|
||||||
|
nn.init.xavier_uniform_(p)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src,
|
||||||
|
mask,
|
||||||
|
query_embed,
|
||||||
|
pos_embed,
|
||||||
|
latent_input=None,
|
||||||
|
proprio_input=None,
|
||||||
|
additional_pos_embed=None,
|
||||||
|
):
|
||||||
|
# TODO flatten only when input has H and W
|
||||||
|
if len(src.shape) == 4: # has H and W
|
||||||
|
# flatten NxCxHxW to HWxNxC
|
||||||
|
bs, c, h, w = src.shape
|
||||||
|
src = src.flatten(2).permute(2, 0, 1)
|
||||||
|
pos_embed = pos_embed.flatten(2).permute(2, 0, 1).repeat(1, bs, 1)
|
||||||
|
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||||
|
# mask = mask.flatten(1)
|
||||||
|
|
||||||
|
additional_pos_embed = additional_pos_embed.unsqueeze(1).repeat(1, bs, 1) # seq, bs, dim
|
||||||
|
pos_embed = torch.cat([additional_pos_embed, pos_embed], axis=0)
|
||||||
|
|
||||||
|
addition_input = torch.stack([latent_input, proprio_input], axis=0)
|
||||||
|
src = torch.cat([addition_input, src], axis=0)
|
||||||
|
else:
|
||||||
|
assert len(src.shape) == 3
|
||||||
|
# flatten NxHWxC to HWxNxC
|
||||||
|
bs, hw, c = src.shape
|
||||||
|
src = src.permute(1, 0, 2)
|
||||||
|
pos_embed = pos_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||||
|
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||||
|
|
||||||
|
tgt = torch.zeros_like(query_embed)
|
||||||
|
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
||||||
|
hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed)
|
||||||
|
hs = hs.transpose(1, 2)
|
||||||
|
return hs
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoder(nn.Module):
|
||||||
|
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||||
|
super().__init__()
|
||||||
|
self.layers = _get_clones(encoder_layer, num_layers)
|
||||||
|
self.num_layers = num_layers
|
||||||
|
self.norm = norm
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src,
|
||||||
|
mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
pos: Optional[Tensor] = None,
|
||||||
|
):
|
||||||
|
output = src
|
||||||
|
|
||||||
|
for layer in self.layers:
|
||||||
|
output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)
|
||||||
|
|
||||||
|
if self.norm is not None:
|
||||||
|
output = self.norm(output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerDecoder(nn.Module):
|
||||||
|
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
||||||
|
super().__init__()
|
||||||
|
self.layers = _get_clones(decoder_layer, num_layers)
|
||||||
|
self.num_layers = num_layers
|
||||||
|
self.norm = norm
|
||||||
|
self.return_intermediate = return_intermediate
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
tgt,
|
||||||
|
memory,
|
||||||
|
tgt_mask: Optional[Tensor] = None,
|
||||||
|
memory_mask: Optional[Tensor] = None,
|
||||||
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
memory_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
pos: Optional[Tensor] = None,
|
||||||
|
query_pos: Optional[Tensor] = None,
|
||||||
|
):
|
||||||
|
output = tgt
|
||||||
|
|
||||||
|
intermediate = []
|
||||||
|
|
||||||
|
for layer in self.layers:
|
||||||
|
output = layer(
|
||||||
|
output,
|
||||||
|
memory,
|
||||||
|
tgt_mask=tgt_mask,
|
||||||
|
memory_mask=memory_mask,
|
||||||
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
pos=pos,
|
||||||
|
query_pos=query_pos,
|
||||||
|
)
|
||||||
|
if self.return_intermediate:
|
||||||
|
intermediate.append(self.norm(output))
|
||||||
|
|
||||||
|
if self.norm is not None:
|
||||||
|
output = self.norm(output)
|
||||||
|
if self.return_intermediate:
|
||||||
|
intermediate.pop()
|
||||||
|
intermediate.append(output)
|
||||||
|
|
||||||
|
if self.return_intermediate:
|
||||||
|
return torch.stack(intermediate)
|
||||||
|
|
||||||
|
return output.unsqueeze(0)
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoderLayer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||||
|
# Implementation of Feedforward model
|
||||||
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||||
|
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.dropout1 = nn.Dropout(dropout)
|
||||||
|
self.dropout2 = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.activation = _get_activation_fn(activation)
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
||||||
|
return tensor if pos is None else tensor + pos
|
||||||
|
|
||||||
|
def forward_post(
|
||||||
|
self,
|
||||||
|
src,
|
||||||
|
src_mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
pos: Optional[Tensor] = None,
|
||||||
|
):
|
||||||
|
q = k = self.with_pos_embed(src, pos)
|
||||||
|
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||||
|
src = src + self.dropout1(src2)
|
||||||
|
src = self.norm1(src)
|
||||||
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||||
|
src = src + self.dropout2(src2)
|
||||||
|
src = self.norm2(src)
|
||||||
|
return src
|
||||||
|
|
||||||
|
def forward_pre(
|
||||||
|
self,
|
||||||
|
src,
|
||||||
|
src_mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
pos: Optional[Tensor] = None,
|
||||||
|
):
|
||||||
|
src2 = self.norm1(src)
|
||||||
|
q = k = self.with_pos_embed(src2, pos)
|
||||||
|
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||||
|
src = src + self.dropout1(src2)
|
||||||
|
src2 = self.norm2(src)
|
||||||
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
||||||
|
src = src + self.dropout2(src2)
|
||||||
|
return src
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src,
|
||||||
|
src_mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
pos: Optional[Tensor] = None,
|
||||||
|
):
|
||||||
|
if self.normalize_before:
|
||||||
|
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
||||||
|
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerDecoderLayer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||||
|
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||||
|
# Implementation of Feedforward model
|
||||||
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||||
|
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.norm3 = nn.LayerNorm(d_model)
|
||||||
|
self.dropout1 = nn.Dropout(dropout)
|
||||||
|
self.dropout2 = nn.Dropout(dropout)
|
||||||
|
self.dropout3 = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.activation = _get_activation_fn(activation)
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
||||||
|
return tensor if pos is None else tensor + pos
|
||||||
|
|
||||||
|
def forward_post(
|
||||||
|
self,
|
||||||
|
tgt,
|
||||||
|
memory,
|
||||||
|
tgt_mask: Optional[Tensor] = None,
|
||||||
|
memory_mask: Optional[Tensor] = None,
|
||||||
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
memory_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
pos: Optional[Tensor] = None,
|
||||||
|
query_pos: Optional[Tensor] = None,
|
||||||
|
):
|
||||||
|
q = k = self.with_pos_embed(tgt, query_pos)
|
||||||
|
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||||
|
tgt = tgt + self.dropout1(tgt2)
|
||||||
|
tgt = self.norm1(tgt)
|
||||||
|
tgt2 = self.multihead_attn(
|
||||||
|
query=self.with_pos_embed(tgt, query_pos),
|
||||||
|
key=self.with_pos_embed(memory, pos),
|
||||||
|
value=memory,
|
||||||
|
attn_mask=memory_mask,
|
||||||
|
key_padding_mask=memory_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
tgt = tgt + self.dropout2(tgt2)
|
||||||
|
tgt = self.norm2(tgt)
|
||||||
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
||||||
|
tgt = tgt + self.dropout3(tgt2)
|
||||||
|
tgt = self.norm3(tgt)
|
||||||
|
return tgt
|
||||||
|
|
||||||
|
def forward_pre(
|
||||||
|
self,
|
||||||
|
tgt,
|
||||||
|
memory,
|
||||||
|
tgt_mask: Optional[Tensor] = None,
|
||||||
|
memory_mask: Optional[Tensor] = None,
|
||||||
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
memory_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
pos: Optional[Tensor] = None,
|
||||||
|
query_pos: Optional[Tensor] = None,
|
||||||
|
):
|
||||||
|
tgt2 = self.norm1(tgt)
|
||||||
|
q = k = self.with_pos_embed(tgt2, query_pos)
|
||||||
|
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||||
|
tgt = tgt + self.dropout1(tgt2)
|
||||||
|
tgt2 = self.norm2(tgt)
|
||||||
|
tgt2 = self.multihead_attn(
|
||||||
|
query=self.with_pos_embed(tgt2, query_pos),
|
||||||
|
key=self.with_pos_embed(memory, pos),
|
||||||
|
value=memory,
|
||||||
|
attn_mask=memory_mask,
|
||||||
|
key_padding_mask=memory_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
tgt = tgt + self.dropout2(tgt2)
|
||||||
|
tgt2 = self.norm3(tgt)
|
||||||
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
||||||
|
tgt = tgt + self.dropout3(tgt2)
|
||||||
|
return tgt
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
tgt,
|
||||||
|
memory,
|
||||||
|
tgt_mask: Optional[Tensor] = None,
|
||||||
|
memory_mask: Optional[Tensor] = None,
|
||||||
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
memory_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
pos: Optional[Tensor] = None,
|
||||||
|
query_pos: Optional[Tensor] = None,
|
||||||
|
):
|
||||||
|
if self.normalize_before:
|
||||||
|
return self.forward_pre(
|
||||||
|
tgt,
|
||||||
|
memory,
|
||||||
|
tgt_mask,
|
||||||
|
memory_mask,
|
||||||
|
tgt_key_padding_mask,
|
||||||
|
memory_key_padding_mask,
|
||||||
|
pos,
|
||||||
|
query_pos,
|
||||||
|
)
|
||||||
|
return self.forward_post(
|
||||||
|
tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_clones(module, n):
|
||||||
|
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
|
||||||
|
|
||||||
|
|
||||||
|
def build_transformer(args):
|
||||||
|
return Transformer(
|
||||||
|
d_model=args.hidden_dim,
|
||||||
|
dropout=args.dropout,
|
||||||
|
nhead=args.nheads,
|
||||||
|
dim_feedforward=args.dim_feedforward,
|
||||||
|
num_encoder_layers=args.enc_layers,
|
||||||
|
num_decoder_layers=args.dec_layers,
|
||||||
|
normalize_before=args.pre_norm,
|
||||||
|
return_intermediate_dec=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_activation_fn(activation):
|
||||||
|
"""Return an activation function given a string"""
|
||||||
|
if activation == "relu":
|
||||||
|
return F.relu
|
||||||
|
if activation == "gelu":
|
||||||
|
return F.gelu
|
||||||
|
if activation == "glu":
|
||||||
|
return F.glu
|
||||||
|
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
|
@ -0,0 +1,477 @@
|
||||||
|
"""
|
||||||
|
Misc functions, including distributed helpers.
|
||||||
|
|
||||||
|
Mostly copy-paste from torchvision references.
|
||||||
|
"""
|
||||||
|
import datetime
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from collections import defaultdict, deque
|
||||||
|
from typing import List, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
# needed due to empty tensor bug in pytorch and torchvision 0.5
|
||||||
|
import torchvision
|
||||||
|
from packaging import version
|
||||||
|
from torch import Tensor
|
||||||
|
|
||||||
|
if version.parse(torchvision.__version__) < version.parse("0.7"):
|
||||||
|
from torchvision.ops import _new_empty_tensor
|
||||||
|
from torchvision.ops.misc import _output_size
|
||||||
|
|
||||||
|
|
||||||
|
class SmoothedValue:
|
||||||
|
"""Track a series of values and provide access to smoothed values over a
|
||||||
|
window or the global series average.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, window_size=20, fmt=None):
|
||||||
|
if fmt is None:
|
||||||
|
fmt = "{median:.4f} ({global_avg:.4f})"
|
||||||
|
self.deque = deque(maxlen=window_size)
|
||||||
|
self.total = 0.0
|
||||||
|
self.count = 0
|
||||||
|
self.fmt = fmt
|
||||||
|
|
||||||
|
def update(self, value, n=1):
|
||||||
|
self.deque.append(value)
|
||||||
|
self.count += n
|
||||||
|
self.total += value * n
|
||||||
|
|
||||||
|
def synchronize_between_processes(self):
|
||||||
|
"""
|
||||||
|
Warning: does not synchronize the deque!
|
||||||
|
"""
|
||||||
|
if not is_dist_avail_and_initialized():
|
||||||
|
return
|
||||||
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
|
||||||
|
dist.barrier()
|
||||||
|
dist.all_reduce(t)
|
||||||
|
t = t.tolist()
|
||||||
|
self.count = int(t[0])
|
||||||
|
self.total = t[1]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def median(self):
|
||||||
|
d = torch.tensor(list(self.deque))
|
||||||
|
return d.median().item()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def avg(self):
|
||||||
|
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
||||||
|
return d.mean().item()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def global_avg(self):
|
||||||
|
return self.total / self.count
|
||||||
|
|
||||||
|
@property
|
||||||
|
def max(self):
|
||||||
|
return max(self.deque)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def value(self):
|
||||||
|
return self.deque[-1]
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return self.fmt.format(
|
||||||
|
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def all_gather(data):
|
||||||
|
"""
|
||||||
|
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
||||||
|
Args:
|
||||||
|
data: any picklable object
|
||||||
|
Returns:
|
||||||
|
list[data]: list of data gathered from each rank
|
||||||
|
"""
|
||||||
|
world_size = get_world_size()
|
||||||
|
if world_size == 1:
|
||||||
|
return [data]
|
||||||
|
|
||||||
|
# serialized to a Tensor
|
||||||
|
buffer = pickle.dumps(data)
|
||||||
|
storage = torch.ByteStorage.from_buffer(buffer)
|
||||||
|
tensor = torch.ByteTensor(storage).to("cuda")
|
||||||
|
|
||||||
|
# obtain Tensor size of each rank
|
||||||
|
local_size = torch.tensor([tensor.numel()], device="cuda")
|
||||||
|
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
|
||||||
|
dist.all_gather(size_list, local_size)
|
||||||
|
size_list = [int(size.item()) for size in size_list]
|
||||||
|
max_size = max(size_list)
|
||||||
|
|
||||||
|
# receiving Tensor from all ranks
|
||||||
|
# we pad the tensor because torch all_gather does not support
|
||||||
|
# gathering tensors of different shapes
|
||||||
|
tensor_list = []
|
||||||
|
for _ in size_list:
|
||||||
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
|
||||||
|
if local_size != max_size:
|
||||||
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
|
||||||
|
tensor = torch.cat((tensor, padding), dim=0)
|
||||||
|
dist.all_gather(tensor_list, tensor)
|
||||||
|
|
||||||
|
data_list = []
|
||||||
|
for size, tensor in zip(size_list, tensor_list, strict=False):
|
||||||
|
buffer = tensor.cpu().numpy().tobytes()[:size]
|
||||||
|
data_list.append(pickle.loads(buffer))
|
||||||
|
|
||||||
|
return data_list
|
||||||
|
|
||||||
|
|
||||||
|
def reduce_dict(input_dict, average=True):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
input_dict (dict): all the values will be reduced
|
||||||
|
average (bool): whether to do average or sum
|
||||||
|
Reduce the values in the dictionary from all processes so that all processes
|
||||||
|
have the averaged results. Returns a dict with the same fields as
|
||||||
|
input_dict, after reduction.
|
||||||
|
"""
|
||||||
|
world_size = get_world_size()
|
||||||
|
if world_size < 2:
|
||||||
|
return input_dict
|
||||||
|
with torch.no_grad():
|
||||||
|
names = []
|
||||||
|
values = []
|
||||||
|
# sort the keys so that they are consistent across processes
|
||||||
|
for k in sorted(input_dict.keys()):
|
||||||
|
names.append(k)
|
||||||
|
values.append(input_dict[k])
|
||||||
|
values = torch.stack(values, dim=0)
|
||||||
|
dist.all_reduce(values)
|
||||||
|
if average:
|
||||||
|
values /= world_size
|
||||||
|
reduced_dict = {k: v for k, v in zip(names, values, strict=False)} # noqa: C416
|
||||||
|
return reduced_dict
|
||||||
|
|
||||||
|
|
||||||
|
class MetricLogger:
|
||||||
|
def __init__(self, delimiter="\t"):
|
||||||
|
self.meters = defaultdict(SmoothedValue)
|
||||||
|
self.delimiter = delimiter
|
||||||
|
|
||||||
|
def update(self, **kwargs):
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
if isinstance(v, torch.Tensor):
|
||||||
|
v = v.item()
|
||||||
|
assert isinstance(v, (float, int))
|
||||||
|
self.meters[k].update(v)
|
||||||
|
|
||||||
|
def __getattr__(self, attr):
|
||||||
|
if attr in self.meters:
|
||||||
|
return self.meters[attr]
|
||||||
|
if attr in self.__dict__:
|
||||||
|
return self.__dict__[attr]
|
||||||
|
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
loss_str = []
|
||||||
|
for name, meter in self.meters.items():
|
||||||
|
loss_str.append("{}: {}".format(name, str(meter)))
|
||||||
|
return self.delimiter.join(loss_str)
|
||||||
|
|
||||||
|
def synchronize_between_processes(self):
|
||||||
|
for meter in self.meters.values():
|
||||||
|
meter.synchronize_between_processes()
|
||||||
|
|
||||||
|
def add_meter(self, name, meter):
|
||||||
|
self.meters[name] = meter
|
||||||
|
|
||||||
|
def log_every(self, iterable, print_freq, header=None):
|
||||||
|
if not header:
|
||||||
|
header = ""
|
||||||
|
start_time = time.time()
|
||||||
|
end = time.time()
|
||||||
|
iter_time = SmoothedValue(fmt="{avg:.4f}")
|
||||||
|
data_time = SmoothedValue(fmt="{avg:.4f}")
|
||||||
|
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
log_msg = self.delimiter.join(
|
||||||
|
[
|
||||||
|
header,
|
||||||
|
"[{0" + space_fmt + "}/{1}]",
|
||||||
|
"eta: {eta}",
|
||||||
|
"{meters}",
|
||||||
|
"time: {time}",
|
||||||
|
"data: {data}",
|
||||||
|
"max mem: {memory:.0f}",
|
||||||
|
]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
log_msg = self.delimiter.join(
|
||||||
|
[
|
||||||
|
header,
|
||||||
|
"[{0" + space_fmt + "}/{1}]",
|
||||||
|
"eta: {eta}",
|
||||||
|
"{meters}",
|
||||||
|
"time: {time}",
|
||||||
|
"data: {data}",
|
||||||
|
]
|
||||||
|
)
|
||||||
|
mega_b = 1024.0 * 1024.0
|
||||||
|
for i, obj in enumerate(iterable):
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
yield obj
|
||||||
|
iter_time.update(time.time() - end)
|
||||||
|
if i % print_freq == 0 or i == len(iterable) - 1:
|
||||||
|
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
||||||
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
print(
|
||||||
|
log_msg.format(
|
||||||
|
i,
|
||||||
|
len(iterable),
|
||||||
|
eta=eta_string,
|
||||||
|
meters=str(self),
|
||||||
|
time=str(iter_time),
|
||||||
|
data=str(data_time),
|
||||||
|
memory=torch.cuda.max_memory_allocated() / mega_b,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print(
|
||||||
|
log_msg.format(
|
||||||
|
i,
|
||||||
|
len(iterable),
|
||||||
|
eta=eta_string,
|
||||||
|
meters=str(self),
|
||||||
|
time=str(iter_time),
|
||||||
|
data=str(data_time),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
end = time.time()
|
||||||
|
total_time = time.time() - start_time
|
||||||
|
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
||||||
|
print("{} Total time: {} ({:.4f} s / it)".format(header, total_time_str, total_time / len(iterable)))
|
||||||
|
|
||||||
|
|
||||||
|
def get_sha():
|
||||||
|
cwd = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
|
||||||
|
def _run(command):
|
||||||
|
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
|
||||||
|
|
||||||
|
sha = "N/A"
|
||||||
|
diff = "clean"
|
||||||
|
branch = "N/A"
|
||||||
|
try:
|
||||||
|
sha = _run(["git", "rev-parse", "HEAD"])
|
||||||
|
subprocess.check_output(["git", "diff"], cwd=cwd)
|
||||||
|
diff = _run(["git", "diff-index", "HEAD"])
|
||||||
|
diff = "has uncommited changes" if diff else "clean"
|
||||||
|
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
message = f"sha: {sha}, status: {diff}, branch: {branch}"
|
||||||
|
return message
|
||||||
|
|
||||||
|
|
||||||
|
def collate_fn(batch):
|
||||||
|
batch = list(zip(*batch, strict=False))
|
||||||
|
batch[0] = nested_tensor_from_tensor_list(batch[0])
|
||||||
|
return tuple(batch)
|
||||||
|
|
||||||
|
|
||||||
|
def _max_by_axis(the_list):
|
||||||
|
# type: (List[List[int]]) -> List[int]
|
||||||
|
maxes = the_list[0]
|
||||||
|
for sublist in the_list[1:]:
|
||||||
|
for index, item in enumerate(sublist):
|
||||||
|
maxes[index] = max(maxes[index], item)
|
||||||
|
return maxes
|
||||||
|
|
||||||
|
|
||||||
|
class NestedTensor:
|
||||||
|
def __init__(self, tensors, mask: Optional[Tensor]):
|
||||||
|
self.tensors = tensors
|
||||||
|
self.mask = mask
|
||||||
|
|
||||||
|
def to(self, device):
|
||||||
|
# type: (Device) -> NestedTensor # noqa
|
||||||
|
cast_tensor = self.tensors.to(device)
|
||||||
|
mask = self.mask
|
||||||
|
if mask is not None:
|
||||||
|
assert mask is not None
|
||||||
|
cast_mask = mask.to(device)
|
||||||
|
else:
|
||||||
|
cast_mask = None
|
||||||
|
return NestedTensor(cast_tensor, cast_mask)
|
||||||
|
|
||||||
|
def decompose(self):
|
||||||
|
return self.tensors, self.mask
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return str(self.tensors)
|
||||||
|
|
||||||
|
|
||||||
|
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
|
||||||
|
# TODO make this more general
|
||||||
|
if tensor_list[0].ndim == 3:
|
||||||
|
if torchvision._is_tracing():
|
||||||
|
# nested_tensor_from_tensor_list() does not export well to ONNX
|
||||||
|
# call _onnx_nested_tensor_from_tensor_list() instead
|
||||||
|
return _onnx_nested_tensor_from_tensor_list(tensor_list)
|
||||||
|
|
||||||
|
# TODO make it support different-sized images
|
||||||
|
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
||||||
|
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
|
||||||
|
batch_shape = [len(tensor_list)] + max_size
|
||||||
|
b, c, h, w = batch_shape
|
||||||
|
dtype = tensor_list[0].dtype
|
||||||
|
device = tensor_list[0].device
|
||||||
|
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
||||||
|
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
|
||||||
|
for img, pad_img, m in zip(tensor_list, tensor, mask, strict=False):
|
||||||
|
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
||||||
|
m[: img.shape[1], : img.shape[2]] = False
|
||||||
|
else:
|
||||||
|
raise ValueError("not supported")
|
||||||
|
return NestedTensor(tensor, mask)
|
||||||
|
|
||||||
|
|
||||||
|
# _onnx_nested_tensor_from_tensor_list() is an implementation of
|
||||||
|
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
|
||||||
|
@torch.jit.unused
|
||||||
|
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
|
||||||
|
max_size = []
|
||||||
|
for i in range(tensor_list[0].dim()):
|
||||||
|
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(
|
||||||
|
torch.int64
|
||||||
|
)
|
||||||
|
max_size.append(max_size_i)
|
||||||
|
max_size = tuple(max_size)
|
||||||
|
|
||||||
|
# work around for
|
||||||
|
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
||||||
|
# m[: img.shape[1], :img.shape[2]] = False
|
||||||
|
# which is not yet supported in onnx
|
||||||
|
padded_imgs = []
|
||||||
|
padded_masks = []
|
||||||
|
for img in tensor_list:
|
||||||
|
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape), strict=False)]
|
||||||
|
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
|
||||||
|
padded_imgs.append(padded_img)
|
||||||
|
|
||||||
|
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
|
||||||
|
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
|
||||||
|
padded_masks.append(padded_mask.to(torch.bool))
|
||||||
|
|
||||||
|
tensor = torch.stack(padded_imgs)
|
||||||
|
mask = torch.stack(padded_masks)
|
||||||
|
|
||||||
|
return NestedTensor(tensor, mask=mask)
|
||||||
|
|
||||||
|
|
||||||
|
def setup_for_distributed(is_master):
|
||||||
|
"""
|
||||||
|
This function disables printing when not in master process
|
||||||
|
"""
|
||||||
|
import builtins as __builtin__
|
||||||
|
|
||||||
|
builtin_print = __builtin__.print
|
||||||
|
|
||||||
|
def print(*args, **kwargs):
|
||||||
|
force = kwargs.pop("force", False)
|
||||||
|
if is_master or force:
|
||||||
|
builtin_print(*args, **kwargs)
|
||||||
|
|
||||||
|
__builtin__.print = print
|
||||||
|
|
||||||
|
|
||||||
|
def is_dist_avail_and_initialized():
|
||||||
|
if not dist.is_available():
|
||||||
|
return False
|
||||||
|
if not dist.is_initialized():
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def get_world_size():
|
||||||
|
if not is_dist_avail_and_initialized():
|
||||||
|
return 1
|
||||||
|
return dist.get_world_size()
|
||||||
|
|
||||||
|
|
||||||
|
def get_rank():
|
||||||
|
if not is_dist_avail_and_initialized():
|
||||||
|
return 0
|
||||||
|
return dist.get_rank()
|
||||||
|
|
||||||
|
|
||||||
|
def is_main_process():
|
||||||
|
return get_rank() == 0
|
||||||
|
|
||||||
|
|
||||||
|
def save_on_master(*args, **kwargs):
|
||||||
|
if is_main_process():
|
||||||
|
torch.save(*args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def init_distributed_mode(args):
|
||||||
|
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
|
||||||
|
args.rank = int(os.environ["RANK"])
|
||||||
|
args.world_size = int(os.environ["WORLD_SIZE"])
|
||||||
|
args.gpu = int(os.environ["LOCAL_RANK"])
|
||||||
|
elif "SLURM_PROCID" in os.environ:
|
||||||
|
args.rank = int(os.environ["SLURM_PROCID"])
|
||||||
|
args.gpu = args.rank % torch.cuda.device_count()
|
||||||
|
else:
|
||||||
|
print("Not using distributed mode")
|
||||||
|
args.distributed = False
|
||||||
|
return
|
||||||
|
|
||||||
|
args.distributed = True
|
||||||
|
|
||||||
|
torch.cuda.set_device(args.gpu)
|
||||||
|
args.dist_backend = "nccl"
|
||||||
|
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
|
||||||
|
torch.distributed.init_process_group(
|
||||||
|
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
|
||||||
|
)
|
||||||
|
torch.distributed.barrier()
|
||||||
|
setup_for_distributed(args.rank == 0)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def accuracy(output, target, topk=(1,)):
|
||||||
|
"""Computes the precision@k for the specified values of k"""
|
||||||
|
if target.numel() == 0:
|
||||||
|
return [torch.zeros([], device=output.device)]
|
||||||
|
maxk = max(topk)
|
||||||
|
batch_size = target.size(0)
|
||||||
|
|
||||||
|
_, pred = output.topk(maxk, 1, True, True)
|
||||||
|
pred = pred.t()
|
||||||
|
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
||||||
|
|
||||||
|
res = []
|
||||||
|
for k in topk:
|
||||||
|
correct_k = correct[:k].view(-1).float().sum(0)
|
||||||
|
res.append(correct_k.mul_(100.0 / batch_size))
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
||||||
|
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
|
||||||
|
"""
|
||||||
|
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
|
||||||
|
This will eventually be supported natively by PyTorch, and this
|
||||||
|
class can go away.
|
||||||
|
"""
|
||||||
|
if version.parse(torchvision.__version__) < version.parse("0.7"):
|
||||||
|
if input.numel() > 0:
|
||||||
|
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)
|
||||||
|
|
||||||
|
output_shape = _output_size(2, input, size, scale_factor)
|
||||||
|
output_shape = list(input.shape[:-2]) + list(output_shape)
|
||||||
|
return _new_empty_tensor(input, output_shape)
|
||||||
|
else:
|
||||||
|
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
|
Loading…
Reference in New Issue