diff --git a/examples/4_train_policy_with_script.md b/examples/4_train_policy_with_script.md index b23d2271..a954bad2 100644 --- a/examples/4_train_policy_with_script.md +++ b/examples/4_train_policy_with_script.md @@ -112,15 +112,15 @@ Now, let's assume that we want to reproduce the run just above. That run has pro We can then simply load the config values from this file using: ```bash python lerobot/scripts/train.py \ - --config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/ \ + --config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/train_config.json \ --output_dir=outputs/train/act_aloha_transfer_2 ``` -`--config_path` is also a special argument which allows to initialize the config from a local config file. It can point to a directory that contains `train_config.json` or to the config file itself directly. +`--config_path` is also a special argument which allows to initialize the config from a local config file. Similarly to Hydra, we can still override some parameters in the CLI if we want to, e.g.: ```bash python lerobot/scripts/train.py \ - --config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/ \ + --config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/train_config.json \ --output_dir=outputs/train/act_aloha_transfer_2 --policy.n_action_steps=80 ``` @@ -156,7 +156,7 @@ INFO 2025-01-24 16:10:56 ts/train.py:263 Checkpoint policy after step 100 Now let's simulate a crash by killing the process (hit `ctrl`+`c`). We can then simply resume this run from the last checkpoint available with: ```bash python lerobot/scripts/train.py \ - --config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/ \ + --config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/train_config.json \ --resume=true ``` You should see from the logging that your training picks up from where it left off. @@ -165,7 +165,7 @@ Another reason for which you might want to resume a run is simply to extend trai You could double the number of steps of the previous run with: ```bash python lerobot/scripts/train.py \ - --config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/ \ + --config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/train_config.json \ --resume=true \ --steps=200000 ``` @@ -245,14 +245,14 @@ python lerobot/scripts/train.py \ #### Train a policy from scratch - config file + CLI ```bash python lerobot/scripts/train.py \ - --config_path=path/to/pretrained_model \ # <- can also be a repo_id + --config_path=path/to/pretrained_model/train_config.json \ # <- can also be a repo_id --policy.n_action_steps=80 # <- you may still override values ``` #### Resume/continue a training run ```bash python lerobot/scripts/train.py \ - --config_path=checkpoint/pretrained_model/ \ + --config_path=checkpoint/pretrained_model/train_config.json \ --resume=true \ --steps=200000 # <- you can change some training parameters ```