Add dataset fixtures
This commit is contained in:
parent
ee51f54cb5
commit
ff84024ee9
|
@ -23,6 +23,9 @@ from lerobot import available_cameras, available_motors, available_robots
|
|||
from lerobot.common.utils.utils import init_hydra_config
|
||||
from tests.utils import DEVICE, ROBOT_CONFIG_PATH_TEMPLATE, make_camera, make_motors_bus
|
||||
|
||||
# Import fixture modules as plugins
|
||||
pytest_plugins = ["tests.fixtures.dataset"]
|
||||
|
||||
|
||||
def pytest_collection_finish():
|
||||
print(f"\nTesting with {DEVICE=}")
|
||||
|
|
|
@ -0,0 +1,152 @@
|
|||
import datasets
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from lerobot.common.datasets.utils import get_episode_data_index, hf_transform_to_torch
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def img_array_factory():
|
||||
def _create_img_array(width=100, height=100) -> np.ndarray:
|
||||
return np.random.randint(0, 256, size=(height, width, 3), dtype=np.uint8)
|
||||
|
||||
return _create_img_array
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def tasks():
|
||||
return [
|
||||
{"task_index": 0, "task": "Pick up the block."},
|
||||
{"task_index": 1, "task": "Open the box."},
|
||||
{"task_index": 2, "task": "Make paperclips."},
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def episode_dicts():
|
||||
return [
|
||||
{"episode_index": 0, "tasks": ["Pick up the block."], "length": 100},
|
||||
{"episode_index": 1, "tasks": ["Open the box."], "length": 80},
|
||||
{"episode_index": 2, "tasks": ["Pick up the block."], "length": 90},
|
||||
{"episode_index": 3, "tasks": ["Make paperclips."], "length": 150},
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def episode_data_index(episode_dicts):
|
||||
return get_episode_data_index(episode_dicts)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def hf_dataset(hf_dataset_factory, episode_dicts, tasks):
|
||||
keys = ["state", "action"]
|
||||
shapes = {
|
||||
"state": 10,
|
||||
"action": 10,
|
||||
}
|
||||
return hf_dataset_factory(episode_dicts, tasks, keys, shapes)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def hf_dataset_image(hf_dataset_factory, episode_dicts, tasks):
|
||||
keys = ["state", "action"]
|
||||
image_keys = ["image"]
|
||||
shapes = {
|
||||
"state": 10,
|
||||
"action": 10,
|
||||
"image": {
|
||||
"width": 100,
|
||||
"height": 70,
|
||||
"channels": 3,
|
||||
},
|
||||
}
|
||||
return hf_dataset_factory(episode_dicts, tasks, keys, shapes, image_keys=image_keys)
|
||||
|
||||
|
||||
def get_task_index(tasks_dicts: dict, task: str) -> int:
|
||||
"""
|
||||
Given a task in natural language, returns its task_index if the task already exists in the dataset,
|
||||
otherwise creates a new task_index.
|
||||
"""
|
||||
tasks = {d["task_index"]: d["task"] for d in tasks_dicts}
|
||||
task_to_task_index = {task: task_idx for task_idx, task in tasks.items()}
|
||||
return task_to_task_index[task]
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def hf_dataset_factory(img_array_factory):
|
||||
def _create_hf_dataset(
|
||||
episode_dicts: list[dict],
|
||||
tasks: list[dict],
|
||||
keys: list[str],
|
||||
shapes: dict,
|
||||
fps: int = 30,
|
||||
image_keys: list[str] | None = None,
|
||||
):
|
||||
key_features = {
|
||||
key: datasets.Sequence(length=shapes[key], feature=datasets.Value(dtype="float32"))
|
||||
for key in keys
|
||||
}
|
||||
image_features = {key: datasets.Image() for key in image_keys} if image_keys else {}
|
||||
common_features = {
|
||||
"episode_index": datasets.Value(dtype="int64"),
|
||||
"frame_index": datasets.Value(dtype="int64"),
|
||||
"timestamp": datasets.Value(dtype="float32"),
|
||||
"next.done": datasets.Value(dtype="bool"),
|
||||
"index": datasets.Value(dtype="int64"),
|
||||
"task_index": datasets.Value(dtype="int64"),
|
||||
}
|
||||
features = datasets.Features(
|
||||
{
|
||||
**key_features,
|
||||
**image_features,
|
||||
**common_features,
|
||||
}
|
||||
)
|
||||
|
||||
episode_index_col = np.array([], dtype=np.int64)
|
||||
frame_index_col = np.array([], dtype=np.int64)
|
||||
timestamp_col = np.array([], dtype=np.float32)
|
||||
next_done_col = np.array([], dtype=bool)
|
||||
task_index = np.array([], dtype=np.int64)
|
||||
|
||||
for ep_dict in episode_dicts:
|
||||
episode_index_col = np.concatenate(
|
||||
(episode_index_col, np.full(ep_dict["length"], ep_dict["episode_index"], dtype=int))
|
||||
)
|
||||
frame_index_col = np.concatenate((frame_index_col, np.arange(ep_dict["length"], dtype=int)))
|
||||
timestamp_col = np.concatenate((timestamp_col, np.arange(ep_dict["length"]) / fps))
|
||||
next_done_ep = np.full(ep_dict["length"], False, dtype=bool)
|
||||
next_done_ep[-1] = True
|
||||
next_done_col = np.concatenate((next_done_col, next_done_ep))
|
||||
ep_task_index = get_task_index(tasks, ep_dict["tasks"][0])
|
||||
task_index = np.concatenate((task_index, np.full(ep_dict["length"], ep_task_index, dtype=int)))
|
||||
|
||||
index_col = np.arange(len(episode_index_col))
|
||||
key_cols = {key: np.random.random((len(index_col), shapes[key])).astype(np.float32) for key in keys}
|
||||
|
||||
image_cols = {}
|
||||
if image_keys:
|
||||
for key in image_keys:
|
||||
image_cols[key] = [
|
||||
img_array_factory(width=shapes[key]["width"], height=shapes[key]["height"])
|
||||
for _ in range(len(index_col))
|
||||
]
|
||||
|
||||
dataset = datasets.Dataset.from_dict(
|
||||
{
|
||||
**key_cols,
|
||||
**image_cols,
|
||||
"episode_index": episode_index_col,
|
||||
"frame_index": frame_index_col,
|
||||
"timestamp": timestamp_col,
|
||||
"next.done": next_done_col,
|
||||
"index": index_col,
|
||||
"task_index": task_index,
|
||||
},
|
||||
features=features,
|
||||
)
|
||||
dataset.set_transform(hf_transform_to_torch)
|
||||
return dataset
|
||||
|
||||
return _create_hf_dataset
|
Loading…
Reference in New Issue