- Added Nan detection mechanisms in the actor, learner and gym_manipulator for the case where we encounter nans in the loop.
- changed the non-blocking in the `.to(device)` functions to only work for the case of cuda because they were causing nans when running the policy on mps
- Added some joint clipping and limits in the env, robot and policy configs. TODO clean this part and make the limits in one config file only.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
- added `torch.compile` to the actor and learner servers.
- organized imports in `train_sac.py`
- optimized the parameters push by not sending the frozen pre-trained encoder.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Added functions for converting the replay buffer from and to LeRobotDataset. When we want to save the replay buffer, we convert it first to LeRobotDataset format and save it locally and vice-versa.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
- Optimized critic design that improves the performance of the learner loop by a factor of 2
- Cleaned the code and fixed style issues
- Completed the config with actor_learner_config field that contains host-ip and port elemnts that are necessary for the actor-learner servers.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>