Minor modifications in gym_manipulator to quantize the gripper actions
clamped the observations after F.resize in ConvertToLeRobotObservation wrapper due to a bug in F.resize, images were returned exceeding the maximum value of 1.0
Moved HilSerl env config to configs/env/configs.py
fixes in actor_server and modeling_sac and configuration_sac
added the possibility of ignoring missing keys in env_cfg in get_features_from_env_config function
- Introduced `WrapperConfig` dataclass for environment wrapper configurations.
- Updated `ManiskillEnvConfig` to include a `wrapper` field for enhanced environment management.
- Modified `SACConfig` to return `None` for `observation_delta_indices` and `action_delta_indices` properties.
- Refactored `make_robot_env` function to improve readability and maintainability.
Added support for hil_serl classifier to be trained with train.py
run classifier training by python lerobot/scripts/train.py --policy.type=hilserl_classifier
fixes in find_joint_limits, control_robot, end_effector_control_utils
- Reduced frame rate in `ManiskillEnvConfig` from 400 to 200.
- Enhanced `SACConfig` with new dataclasses for actor, learner, and network configurations.
- Improved input and output feature management in `SACConfig`.
- Refactored `actor_server` and `learner_server` to access configuration properties directly.
- Updated training pipeline to validate configurations and handle dataset repo IDs more robustly.
Add ManiSkill environment configuration and wrappers
- Introduced `VideoRecordConfig` for video recording settings.
- Added `ManiskillEnvConfig` to encapsulate environment-specific configurations.
- Implemented various wrappers for the ManiSkill environment, including observation and action scaling.
- Enhanced the `make_maniskill` function to create a wrapped ManiSkill environment with video recording and observation processing.
- Updated the `actor_server` and `learner_server` to utilize the new configuration structure.
- Refactored the training pipeline to accommodate the new environment and policy configurations.
- Fixed big issue in the normalization of the actions in the `forward` function of the critic -- remove the `torch.no_grad` decorator in `normalize.py` in the normalization function
- Fixed performance issue to boost the optimization frequency by setting the storage device to be the same as the device of learning.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
- Added Nan detection mechanisms in the actor, learner and gym_manipulator for the case where we encounter nans in the loop.
- changed the non-blocking in the `.to(device)` functions to only work for the case of cuda because they were causing nans when running the policy on mps
- Added some joint clipping and limits in the env, robot and policy configs. TODO clean this part and make the limits in one config file only.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
- Added `lerobot/scripts/server/find_joint_limits.py` to test the min and max angles of the motion you wish the robot to explore during RL training.
- Added logic in `manipulator.py` to limit the maximum possible joint angles to allow motion within a predefined joint position range. The limits are specified in the yaml config for each robot. Checkout the so100.yaml.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>