# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tests for physical robots and their mocked versions.
If the physical robots are not connected to the computer, or not working,
the test will be skipped.

Example of running a specific test:
```bash
pytest -sx tests/test_robots.py::test_robot
```

Example of running test on real robots connected to the computer:
```bash
pytest -sx 'tests/test_robots.py::test_robot[koch-False]'
pytest -sx 'tests/test_robots.py::test_robot[koch_bimanual-False]'
pytest -sx 'tests/test_robots.py::test_robot[aloha-False]'
```

Example of running test on a mocked version of robots:
```bash
pytest -sx 'tests/test_robots.py::test_robot[koch-True]'
pytest -sx 'tests/test_robots.py::test_robot[koch_bimanual-True]'
pytest -sx 'tests/test_robots.py::test_robot[aloha-True]'
```
"""

import pytest
import torch

from lerobot.common.robot_devices.robots.utils import make_robot
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from tests.utils import TEST_ROBOT_TYPES, mock_calibration_dir, require_robot


@pytest.mark.parametrize("robot_type, mock", TEST_ROBOT_TYPES)
@require_robot
def test_robot(tmp_path, request, robot_type, mock):
    # TODO(rcadene): measure fps in nightly?
    # TODO(rcadene): test logs
    # TODO(rcadene): add compatibility with other robots
    robot_kwargs = {"robot_type": robot_type, "mock": mock}

    if robot_type == "aloha" and mock:
        # To simplify unit test, we do not rerun manual calibration for Aloha mock=True.
        # Instead, we use the files from '.cache/calibration/aloha_default'
        pass
    else:
        if mock:
            request.getfixturevalue("patch_builtins_input")

        # Create an empty calibration directory to trigger manual calibration
        calibration_dir = tmp_path / robot_type
        mock_calibration_dir(calibration_dir)
        robot_kwargs["calibration_dir"] = calibration_dir

    # Test using robot before connecting raises an error
    robot = make_robot(**robot_kwargs)
    with pytest.raises(RobotDeviceNotConnectedError):
        robot.teleop_step()
    with pytest.raises(RobotDeviceNotConnectedError):
        robot.teleop_step(record_data=True)
    with pytest.raises(RobotDeviceNotConnectedError):
        robot.capture_observation()
    with pytest.raises(RobotDeviceNotConnectedError):
        robot.send_action(None)
    with pytest.raises(RobotDeviceNotConnectedError):
        robot.disconnect()

    # Test deleting the object without connecting first
    del robot

    # Test connecting (triggers manual calibration)
    robot = make_robot(**robot_kwargs)
    robot.connect()
    assert robot.is_connected

    # Test connecting twice raises an error
    with pytest.raises(RobotDeviceAlreadyConnectedError):
        robot.connect()

    # TODO(rcadene, aliberts): Test disconnecting with `__del__` instead of `disconnect`
    # del robot
    robot.disconnect()

    # Test teleop can run
    robot = make_robot(**robot_kwargs)
    robot.connect()
    robot.teleop_step()

    # Test data recorded during teleop are well formatted
    observation, action = robot.teleop_step(record_data=True)
    # State
    assert "observation.state" in observation
    assert isinstance(observation["observation.state"], torch.Tensor)
    assert observation["observation.state"].ndim == 1
    dim_state = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms)
    assert observation["observation.state"].shape[0] == dim_state
    # Cameras
    for name in robot.cameras:
        assert f"observation.images.{name}" in observation
        assert isinstance(observation[f"observation.images.{name}"], torch.Tensor)
        assert observation[f"observation.images.{name}"].ndim == 3
    # Action
    assert "action" in action
    assert isinstance(action["action"], torch.Tensor)
    assert action["action"].ndim == 1
    dim_action = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms)
    assert action["action"].shape[0] == dim_action
    # TODO(rcadene): test if observation and action data are returned as expected

    # Test capture_observation can run and observation returned are the same (since the arm didnt move)
    captured_observation = robot.capture_observation()
    assert set(captured_observation.keys()) == set(observation.keys())
    for name in captured_observation:
        if "image" in name:
            # TODO(rcadene): skipping image for now as it's challenging to assess equality between two consecutive frames
            continue
        torch.testing.assert_close(captured_observation[name], observation[name], rtol=1e-4, atol=1)
        assert captured_observation[name].shape == observation[name].shape

    # Test send_action can run
    robot.send_action(action["action"])

    # Test disconnecting
    robot.disconnect()
    assert not robot.is_connected
    for name in robot.follower_arms:
        assert not robot.follower_arms[name].is_connected
    for name in robot.leader_arms:
        assert not robot.leader_arms[name].is_connected
    for name in robot.cameras:
        assert not robot.cameras[name].is_connected