import time import torch from lerobot.common.datasets.factory import make_dataset from lerobot.common.policies.factory import make_policy from lerobot.common.robot_devices.utils import busy_wait from lerobot.common.utils.utils import init_hydra_config, set_global_seed from tests.utils import DEFAULT_CONFIG_PATH def main(env_name, policy_name, extra_overrides): cfg = init_hydra_config( DEFAULT_CONFIG_PATH, overrides=[ f"env={env_name}", f"policy={policy_name}", "device=mps", ] + extra_overrides, ) set_global_seed(1337) dataset = make_dataset(cfg) policy = make_policy(cfg, dataset_stats=dataset.stats) dataloader = torch.utils.data.DataLoader( dataset, num_workers=0, batch_size=1, shuffle=False, ) batch = next(iter(dataloader)) obs = {} for k in batch: if k.startswith("observation"): obs[k] = batch[k].to("mps") # actions = policy.inference(obs) fps = 30 for i in range(400): start_loop_t = time.perf_counter() next_action = policy.select_action(obs) # noqa: F841 dt_s = time.perf_counter() - start_loop_t busy_wait(1 / fps - dt_s) dt_s = time.perf_counter() - start_loop_t print( f"{i=}, {dt_s * 1000:5.2f} ({1/ dt_s:3.1f}hz) \t{policy._present_timestamp}\t{policy._present_action_timestamp}" ) # , {next_action.mean().item()}") # time.sleep(1/30) # frequency at which we receive a new observation (30 Hz = 0.03 s) # time.sleep(0.5) # frequency at which we receive a new observation (5 Hz = 0.2 s) if __name__ == "__main__": main("aloha", "act", ["policy.n_action_steps=100"])