import json import logging import os from copy import deepcopy from pathlib import Path import einops import pytest import torch from datasets import Dataset from safetensors.torch import load_file import lerobot from lerobot.common.datasets.factory import make_dataset from lerobot.common.datasets.pusht import PushtDataset from lerobot.common.datasets.utils import ( compute_stats, flatten_dict, get_stats_einops_patterns, hf_transform_to_torch, load_previous_and_future_frames, unflatten_dict, ) from lerobot.common.utils.utils import init_hydra_config from .utils import DEFAULT_CONFIG_PATH, DEVICE @pytest.mark.parametrize("env_name, dataset_id, policy_name", lerobot.env_dataset_policy_triplets) def test_factory(env_name, dataset_id, policy_name): cfg = init_hydra_config( DEFAULT_CONFIG_PATH, overrides=[ f"env={env_name}", f"dataset_id={dataset_id}", f"policy={policy_name}", f"device={DEVICE}", ], ) dataset = make_dataset(cfg) delta_timestamps = dataset.delta_timestamps image_keys = dataset.image_keys item = dataset[0] keys_ndim_required = [ ("action", 1, True), ("episode_index", 0, True), ("frame_index", 0, True), ("timestamp", 0, True), # TODO(rcadene): should we rename it agent_pos? ("observation.state", 1, True), ("next.reward", 0, False), ("next.done", 0, False), ] # test number of dimensions for key, ndim, required in keys_ndim_required: if key not in item: if required: assert key in item, f"{key}" else: logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.') continue if delta_timestamps is not None and key in delta_timestamps: assert item[key].ndim == ndim + 1, f"{key}" assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}" else: assert item[key].ndim == ndim, f"{key}" if key in image_keys: assert item[key].dtype == torch.float32, f"{key}" # TODO(rcadene): we assume for now that image normalization takes place in the model assert item[key].max() <= 1.0, f"{key}" assert item[key].min() >= 0.0, f"{key}" if delta_timestamps is not None and key in delta_timestamps: # test t,c,h,w assert item[key].shape[1] == 3, f"{key}" else: # test c,h,w assert item[key].shape[0] == 3, f"{key}" if delta_timestamps is not None: # test missing keys in delta_timestamps for key in delta_timestamps: assert key in item, f"{key}" def test_compute_stats_on_xarm(): """Check that the statistics are computed correctly according to the stats_patterns property. We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do because we are working with a small dataset). """ # TODO(rcadene): Reduce size of dataset sample on which stats compute is tested from lerobot.common.datasets.xarm import XarmDataset dataset = XarmDataset( dataset_id="xarm_lift_medium", root=Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None, ) # Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched # computation of the statistics. While doing this, we also make sure it works when we don't divide the # dataset into even batches. computed_stats = compute_stats(dataset.hf_dataset, batch_size=int(len(dataset) * 0.25)) # get einops patterns to aggregate batches and compute statistics stats_patterns = get_stats_einops_patterns(dataset.hf_dataset) # get all frames from the dataset in the same dtype and range as during compute_stats dataloader = torch.utils.data.DataLoader( dataset, num_workers=8, batch_size=len(dataset), shuffle=False, ) full_batch = next(iter(dataloader)) # compute stats based on all frames from the dataset without any batching expected_stats = {} for k, pattern in stats_patterns.items(): full_batch[k] = full_batch[k].float() expected_stats[k] = {} expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean") expected_stats[k]["std"] = torch.sqrt( einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean") ) expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min") expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max") # test computed stats match expected stats for k in stats_patterns: assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"]) assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"]) assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"]) assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"]) # load stats used during training which are expected to match the ones returned by computed_stats loaded_stats = dataset.stats # noqa: F841 # TODO(rcadene): we can't test this because expected_stats is computed on a subset # # test loaded stats match expected stats # for k in stats_patterns: # assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"]) # assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"]) # assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"]) # assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"]) def test_load_previous_and_future_frames_within_tolerance(): hf_dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5], "index": [0, 1, 2, 3, 4], "episode_index": [0, 0, 0, 0, 0], } ) hf_dataset.set_transform(hf_transform_to_torch) episode_data_index = { "from": torch.tensor([0]), "to": torch.tensor([5]), } delta_timestamps = {"index": [-0.2, 0, 0.139]} tol = 0.04 item = hf_dataset[2] item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol) data, is_pad = item["index"], item["index_is_pad"] assert torch.equal(data, torch.tensor([0, 2, 3])), "Data does not match expected values" assert not is_pad.any(), "Unexpected padding detected" def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range(): hf_dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5], "index": [0, 1, 2, 3, 4], "episode_index": [0, 0, 0, 0, 0], } ) hf_dataset.set_transform(hf_transform_to_torch) episode_data_index = { "from": torch.tensor([0]), "to": torch.tensor([5]), } delta_timestamps = {"index": [-0.2, 0, 0.141]} tol = 0.04 item = hf_dataset[2] with pytest.raises(AssertionError): load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol) def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range(): hf_dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5], "index": [0, 1, 2, 3, 4], "episode_index": [0, 0, 0, 0, 0], } ) hf_dataset.set_transform(hf_transform_to_torch) episode_data_index = { "from": torch.tensor([0]), "to": torch.tensor([5]), } delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]} tol = 0.04 item = hf_dataset[2] item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol) data, is_pad = item["index"], item["index_is_pad"] assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values" assert torch.equal( is_pad, torch.tensor([True, False, False, True, True]) ), "Padding does not match expected values" def test_flatten_unflatten_dict(): d = { "obs": { "min": 0, "max": 1, "mean": 2, "std": 3, }, "action": { "min": 4, "max": 5, "mean": 6, "std": 7, }, } original_d = deepcopy(d) d = unflatten_dict(flatten_dict(d)) # test equality between nested dicts assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}" def test_backward_compatibility(): """This tests artifacts have been generated by `tests/scripts/save_dataset_to_safetensors.py`.""" # TODO(rcadene): make it work for all datasets with LeRobotDataset(repo_id) dataset_id = "pusht" data_dir = Path("tests/data/save_dataset_to_safetensors") / dataset_id dataset = PushtDataset( dataset_id=dataset_id, split="train", root=Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None, ) def load_and_compare(i): new_frame = dataset[i] old_frame = load_file(data_dir / f"frame_{i}.safetensors") new_keys = set(new_frame.keys()) old_keys = set(old_frame.keys()) assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same" for key in new_frame: assert ( new_frame[key] == old_frame[key] ).all(), f"{key=} for index={i} does not contain the same value" # test2 first frames of first episode i = dataset.episode_data_index["from"][0].item() load_and_compare(i) load_and_compare(i + 1) # test 2 frames at the middle of first episode i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2) load_and_compare(i) load_and_compare(i + 1) # test 2 last frames of first episode i = dataset.episode_data_index["to"][0].item() load_and_compare(i - 2) load_and_compare(i - 1) # TODO(rcadene): Enable testing on second and last episode # We currently cant because our test dataset only contains the first episode # # test 2 first frames of second episode # i = dataset.episode_data_index["from"][1].item() # load_and_compare(i) # load_and_compare(i+1) # #test 2 last frames of second episode # i = dataset.episode_data_index["to"][1].item() # load_and_compare(i-2) # load_and_compare(i-1) # # test 2 last frames of last episode # i = dataset.episode_data_index["to"][-1].item() # load_and_compare(i-2) # load_and_compare(i-1)