#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging from copy import deepcopy from pathlib import Path import einops import pytest import torch from datasets import Dataset from safetensors.torch import load_file import lerobot from lerobot.common.datasets.compute_stats import ( aggregate_stats, compute_stats, get_stats_einops_patterns, ) from lerobot.common.datasets.factory import make_dataset from lerobot.common.datasets.lerobot_dataset import LeRobotDataset from lerobot.common.datasets.utils import ( flatten_dict, hf_transform_to_torch, load_previous_and_future_frames, unflatten_dict, ) from lerobot.common.utils.utils import init_hydra_config, seeded_context from tests.utils import DEFAULT_CONFIG_PATH, DEVICE @pytest.mark.parametrize( "env_name, repo_id, policy_name", lerobot.env_dataset_policy_triplets + [("aloha", ["lerobot/aloha_sim_insertion_human", "lerobot/aloha_sim_transfer_cube_human"], "act")], ) def test_factory(env_name, repo_id, policy_name): """ Tests that: - we can create a dataset with the factory. - for a commonly used set of data keys, the data dimensions are correct. """ cfg = init_hydra_config( DEFAULT_CONFIG_PATH, overrides=[ f"env={env_name}", f"dataset_repo_id={repo_id}", f"policy={policy_name}", f"device={DEVICE}", ], ) dataset = make_dataset(cfg) delta_timestamps = dataset.delta_timestamps camera_keys = dataset.camera_keys item = dataset[0] keys_ndim_required = [ ("action", 1, True), ("episode_index", 0, True), ("frame_index", 0, True), ("timestamp", 0, True), # TODO(rcadene): should we rename it agent_pos? ("observation.state", 1, True), ("next.reward", 0, False), ("next.done", 0, False), ] # test number of dimensions for key, ndim, required in keys_ndim_required: if key not in item: if required: assert key in item, f"{key}" else: logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.') continue if delta_timestamps is not None and key in delta_timestamps: assert item[key].ndim == ndim + 1, f"{key}" assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}" else: assert item[key].ndim == ndim, f"{key}" if key in camera_keys: assert item[key].dtype == torch.float32, f"{key}" # TODO(rcadene): we assume for now that image normalization takes place in the model assert item[key].max() <= 1.0, f"{key}" assert item[key].min() >= 0.0, f"{key}" if delta_timestamps is not None and key in delta_timestamps: # test t,c,h,w assert item[key].shape[1] == 3, f"{key}" else: # test c,h,w assert item[key].shape[0] == 3, f"{key}" if delta_timestamps is not None: # test missing keys in delta_timestamps for key in delta_timestamps: assert key in item, f"{key}" def test_compute_stats_on_xarm(): """Check that the statistics are computed correctly according to the stats_patterns property. We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do because we are working with a small dataset). """ dataset = LeRobotDataset("lerobot/xarm_lift_medium") # reduce size of dataset sample on which stats compute is tested to 10 frames dataset.hf_dataset = dataset.hf_dataset.select(range(10)) # Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched # computation of the statistics. While doing this, we also make sure it works when we don't divide the # dataset into even batches. computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25), num_workers=0) # get einops patterns to aggregate batches and compute statistics stats_patterns = get_stats_einops_patterns(dataset) # get all frames from the dataset in the same dtype and range as during compute_stats dataloader = torch.utils.data.DataLoader( dataset, num_workers=0, batch_size=len(dataset), shuffle=False, ) full_batch = next(iter(dataloader)) # compute stats based on all frames from the dataset without any batching expected_stats = {} for k, pattern in stats_patterns.items(): full_batch[k] = full_batch[k].float() expected_stats[k] = {} expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean") expected_stats[k]["std"] = torch.sqrt( einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean") ) expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min") expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max") # test computed stats match expected stats for k in stats_patterns: assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"]) assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"]) assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"]) assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"]) # load stats used during training which are expected to match the ones returned by computed_stats loaded_stats = dataset.stats # noqa: F841 # TODO(rcadene): we can't test this because expected_stats is computed on a subset # # test loaded stats match expected stats # for k in stats_patterns: # assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"]) # assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"]) # assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"]) # assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"]) def test_load_previous_and_future_frames_within_tolerance(): hf_dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5], "index": [0, 1, 2, 3, 4], "episode_index": [0, 0, 0, 0, 0], } ) hf_dataset.set_transform(hf_transform_to_torch) episode_data_index = { "from": torch.tensor([0]), "to": torch.tensor([5]), } delta_timestamps = {"index": [-0.2, 0, 0.139]} tol = 0.04 item = hf_dataset[2] item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol) data, is_pad = item["index"], item["index_is_pad"] assert torch.equal(data, torch.tensor([0, 2, 3])), "Data does not match expected values" assert not is_pad.any(), "Unexpected padding detected" def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range(): hf_dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5], "index": [0, 1, 2, 3, 4], "episode_index": [0, 0, 0, 0, 0], } ) hf_dataset.set_transform(hf_transform_to_torch) episode_data_index = { "from": torch.tensor([0]), "to": torch.tensor([5]), } delta_timestamps = {"index": [-0.2, 0, 0.141]} tol = 0.04 item = hf_dataset[2] with pytest.raises(AssertionError): load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol) def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range(): hf_dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5], "index": [0, 1, 2, 3, 4], "episode_index": [0, 0, 0, 0, 0], } ) hf_dataset.set_transform(hf_transform_to_torch) episode_data_index = { "from": torch.tensor([0]), "to": torch.tensor([5]), } delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]} tol = 0.04 item = hf_dataset[2] item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol) data, is_pad = item["index"], item["index_is_pad"] assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values" assert torch.equal( is_pad, torch.tensor([True, False, False, True, True]) ), "Padding does not match expected values" def test_flatten_unflatten_dict(): d = { "obs": { "min": 0, "max": 1, "mean": 2, "std": 3, }, "action": { "min": 4, "max": 5, "mean": 6, "std": 7, }, } original_d = deepcopy(d) d = unflatten_dict(flatten_dict(d)) # test equality between nested dicts assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}" @pytest.mark.parametrize( "repo_id", [ "lerobot/pusht", "lerobot/aloha_sim_insertion_human", "lerobot/xarm_lift_medium", ], ) def test_backward_compatibility(repo_id): """The artifacts for this test have been generated by `tests/scripts/save_dataset_to_safetensors.py`.""" dataset = LeRobotDataset( repo_id, ) test_dir = Path("tests/data/save_dataset_to_safetensors") / repo_id def load_and_compare(i): new_frame = dataset[i] # noqa: B023 old_frame = load_file(test_dir / f"frame_{i}.safetensors") # noqa: B023 new_keys = set(new_frame.keys()) old_keys = set(old_frame.keys()) assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same" for key in new_frame: assert torch.isclose( new_frame[key], old_frame[key] ).all(), f"{key=} for index={i} does not contain the same value" # test2 first frames of first episode i = dataset.episode_data_index["from"][0].item() load_and_compare(i) load_and_compare(i + 1) # test 2 frames at the middle of first episode i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2) load_and_compare(i) load_and_compare(i + 1) # test 2 last frames of first episode i = dataset.episode_data_index["to"][0].item() load_and_compare(i - 2) load_and_compare(i - 1) # TODO(rcadene): Enable testing on second and last episode # We currently cant because our test dataset only contains the first episode # # test 2 first frames of second episode # i = dataset.episode_data_index["from"][1].item() # load_and_compare(i) # load_and_compare(i + 1) # # test 2 last frames of second episode # i = dataset.episode_data_index["to"][1].item() # load_and_compare(i - 2) # load_and_compare(i - 1) # # test 2 last frames of last episode # i = dataset.episode_data_index["to"][-1].item() # load_and_compare(i - 2) # load_and_compare(i - 1) def test_aggregate_stats(): """Makes 3 basic datasets and checks that aggregate stats are computed correctly.""" with seeded_context(0): data_a = torch.rand(30, dtype=torch.float32) data_b = torch.rand(20, dtype=torch.float32) data_c = torch.rand(20, dtype=torch.float32) hf_dataset_1 = Dataset.from_dict( {"a": data_a[:10], "b": data_b[:10], "c": data_c[:10], "index": torch.arange(10)} ) hf_dataset_1.set_transform(hf_transform_to_torch) hf_dataset_2 = Dataset.from_dict({"a": data_a[10:20], "b": data_b[10:], "index": torch.arange(10)}) hf_dataset_2.set_transform(hf_transform_to_torch) hf_dataset_3 = Dataset.from_dict({"a": data_a[20:], "c": data_c[10:], "index": torch.arange(10)}) hf_dataset_3.set_transform(hf_transform_to_torch) dataset_1 = LeRobotDataset.from_preloaded("d1", hf_dataset=hf_dataset_1) dataset_1.stats = compute_stats(dataset_1, batch_size=len(hf_dataset_1), num_workers=0) dataset_2 = LeRobotDataset.from_preloaded("d2", hf_dataset=hf_dataset_2) dataset_2.stats = compute_stats(dataset_2, batch_size=len(hf_dataset_2), num_workers=0) dataset_3 = LeRobotDataset.from_preloaded("d3", hf_dataset=hf_dataset_3) dataset_3.stats = compute_stats(dataset_3, batch_size=len(hf_dataset_3), num_workers=0) stats = aggregate_stats([dataset_1, dataset_2, dataset_3]) for data_key, data in zip(["a", "b", "c"], [data_a, data_b, data_c], strict=True): for agg_fn in ["mean", "min", "max"]: assert torch.allclose(stats[data_key][agg_fn], einops.reduce(data, "n -> 1", agg_fn)) assert torch.allclose(stats[data_key]["std"], torch.std(data, correction=0))