# TODO(aliberts): Mute logging for these tests import subprocess import sys from pathlib import Path from tests.utils import require_package def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> str: for f, r in finds_and_replaces: assert f in text text = text.replace(f, r) return text def _run_script(path): subprocess.run([sys.executable, path], check=True) def test_example_1(): path = "examples/1_load_lerobot_dataset.py" _run_script(path) assert Path("outputs/examples/1_load_lerobot_dataset/episode_0.mp4").exists() @require_package("gym_pusht") def test_examples_3_and_2(): """ Train a model with example 3, check the outputs. Evaluate the trained model with example 2, check the outputs. """ path = "examples/3_train_policy.py" with open(path) as file: file_contents = file.read() # Do less steps, use smaller batch, use CPU, and don't complicate things with dataloader workers. file_contents = _find_and_replace( file_contents, [ ("training_steps = 5000", "training_steps = 1"), ("num_workers=4", "num_workers=0"), ('device = torch.device("cuda")', 'device = torch.device("cpu")'), ("batch_size=64", "batch_size=1"), ], ) # Pass empty globals to allow dictionary comprehension https://stackoverflow.com/a/32897127/4391249. exec(file_contents, {}) for file_name in ["model.safetensors", "config.json"]: assert Path(f"outputs/train/example_pusht_diffusion/{file_name}").exists() path = "examples/2_evaluate_pretrained_policy.py" with open(path) as file: file_contents = file.read() # Do less evals, use CPU, and use the local model. file_contents = _find_and_replace( file_contents, [ ('pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))', ""), ( '# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")', 'pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")', ), ('device = torch.device("cuda")', 'device = torch.device("cpu")'), ("step += 1", "break"), ], ) exec(file_contents, {}) assert Path("outputs/eval/example_pusht_diffusion/rollout.mp4").exists()