#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import re from itertools import chain from pathlib import Path import numpy as np import pytest import torch from huggingface_hub import HfApi from PIL import Image from safetensors.torch import load_file import lerobot from lerobot.common.datasets.factory import make_dataset from lerobot.common.datasets.image_writer import image_array_to_pil_image from lerobot.common.datasets.lerobot_dataset import ( LeRobotDataset, MultiLeRobotDataset, ) from lerobot.common.datasets.utils import ( create_branch, ) from lerobot.common.envs.factory import make_env_config from lerobot.common.policies.factory import make_policy_config from lerobot.common.robot_devices.robots.utils import make_robot from lerobot.configs.default import DatasetConfig from lerobot.configs.train import TrainPipelineConfig from tests.fixtures.constants import DUMMY_CHW, DUMMY_HWC, DUMMY_REPO_ID from tests.utils import require_x86_64_kernel @pytest.fixture def image_dataset(tmp_path, empty_lerobot_dataset_factory): features = { "image": { "dtype": "image", "shape": DUMMY_CHW, "names": [ "channels", "height", "width", ], } } return empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) def test_same_attributes_defined(tmp_path, lerobot_dataset_factory): """ Instantiate a LeRobotDataset both ways with '__init__()' and 'create()' and verify that instantiated objects have the same sets of attributes defined. """ # Instantiate both ways robot = make_robot("koch", mock=True) root_create = tmp_path / "create" dataset_create = LeRobotDataset.create(repo_id=DUMMY_REPO_ID, fps=30, robot=robot, root=root_create) root_init = tmp_path / "init" dataset_init = lerobot_dataset_factory(root=root_init) init_attr = set(vars(dataset_init).keys()) create_attr = set(vars(dataset_create).keys()) assert init_attr == create_attr def test_dataset_initialization(tmp_path, lerobot_dataset_factory): kwargs = { "repo_id": DUMMY_REPO_ID, "total_episodes": 10, "total_frames": 400, "episodes": [2, 5, 6], } dataset = lerobot_dataset_factory(root=tmp_path / "test", **kwargs) assert dataset.repo_id == kwargs["repo_id"] assert dataset.meta.total_episodes == kwargs["total_episodes"] assert dataset.meta.total_frames == kwargs["total_frames"] assert dataset.episodes == kwargs["episodes"] assert dataset.num_episodes == len(kwargs["episodes"]) assert dataset.num_frames == len(dataset) # TODO(rcadene, aliberts): do not run LeRobotDataset.create, instead refactor LeRobotDatasetMetadata.create # and test the small resulting function that validates the features def test_dataset_feature_with_forward_slash_raises_error(): # make sure dir does not exist from lerobot.common.constants import HF_LEROBOT_HOME dataset_dir = HF_LEROBOT_HOME / "lerobot/test/with/slash" # make sure does not exist if dataset_dir.exists(): dataset_dir.rmdir() with pytest.raises(ValueError): LeRobotDataset.create( repo_id="lerobot/test/with/slash", fps=30, features={"a/b": {"dtype": "float32", "shape": 2, "names": None}}, ) def test_add_frame_missing_task(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match="Feature mismatch in `frame` dictionary:\nMissing features: {'task'}\n" ): dataset.add_frame({"state": torch.randn(1)}) def test_add_frame_missing_feature(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match="Feature mismatch in `frame` dictionary:\nMissing features: {'state'}\n" ): dataset.add_frame({"task": "Dummy task"}) def test_add_frame_extra_feature(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match="Feature mismatch in `frame` dictionary:\nExtra features: {'extra'}\n" ): dataset.add_frame({"state": torch.randn(1), "task": "Dummy task", "extra": "dummy_extra"}) def test_add_frame_wrong_type(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match="The feature 'state' of dtype 'float16' is not of the expected dtype 'float32'.\n" ): dataset.add_frame({"state": torch.randn(1, dtype=torch.float16), "task": "Dummy task"}) def test_add_frame_wrong_shape(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match=re.escape("The feature 'state' of shape '(1,)' does not have the expected shape '(2,)'.\n"), ): dataset.add_frame({"state": torch.randn(1), "task": "Dummy task"}) def test_add_frame_wrong_shape_python_float(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match=re.escape( "The feature 'state' is not a 'np.ndarray'. Expected type is 'float32', but type '' provided instead.\n" ), ): dataset.add_frame({"state": 1.0, "task": "Dummy task"}) def test_add_frame_wrong_shape_torch_ndim_0(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match=re.escape("The feature 'state' of shape '()' does not have the expected shape '(1,)'.\n"), ): dataset.add_frame({"state": torch.tensor(1.0), "task": "Dummy task"}) def test_add_frame_wrong_shape_numpy_ndim_0(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match=re.escape( "The feature 'state' is not a 'np.ndarray'. Expected type is 'float32', but type '' provided instead.\n" ), ): dataset.add_frame({"state": np.float32(1.0), "task": "Dummy task"}) def test_add_frame(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(1), "task": "Dummy task"}) dataset.save_episode() assert len(dataset) == 1 assert dataset[0]["task"] == "Dummy task" assert dataset[0]["task_index"] == 0 assert dataset[0]["state"].ndim == 0 def test_add_frame_state_1d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2]) def test_add_frame_state_2d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2, 4), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2, 4), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2, 4]) def test_add_frame_state_3d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2, 4, 3), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2, 4, 3), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2, 4, 3]) def test_add_frame_state_4d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2, 4, 3, 5), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5]) def test_add_frame_state_5d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5, 1), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2, 4, 3, 5, 1), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5, 1]) def test_add_frame_state_numpy(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": np.array([1], dtype=np.float32), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].ndim == 0 def test_add_frame_string(tmp_path, empty_lerobot_dataset_factory): features = {"caption": {"dtype": "string", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"caption": "Dummy caption", "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["caption"] == "Dummy caption" def test_add_frame_image_wrong_shape(image_dataset): dataset = image_dataset with pytest.raises( ValueError, match=re.escape( "The feature 'image' of shape '(3, 128, 96)' does not have the expected shape '(3, 96, 128)' or '(96, 128, 3)'.\n" ), ): c, h, w = DUMMY_CHW dataset.add_frame({"image": torch.randn(c, w, h), "task": "Dummy task"}) def test_add_frame_image_wrong_range(image_dataset): """This test will display the following error message from a thread: ``` Error writing image ...test_add_frame_image_wrong_ran0/test/images/image/episode_000000/frame_000000.png: The image data type is float, which requires values in the range [0.0, 1.0]. However, the provided range is [0.009678772038470007, 254.9776492089887]. Please adjust the range or provide a uint8 image with values in the range [0, 255] ``` Hence the image won't be saved on disk and save_episode will raise `FileNotFoundError`. """ dataset = image_dataset dataset.add_frame({"image": np.random.rand(*DUMMY_CHW) * 255, "task": "Dummy task"}) with pytest.raises(FileNotFoundError): dataset.save_episode() def test_add_frame_image(image_dataset): dataset = image_dataset dataset.add_frame({"image": np.random.rand(*DUMMY_CHW), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW) def test_add_frame_image_h_w_c(image_dataset): dataset = image_dataset dataset.add_frame({"image": np.random.rand(*DUMMY_HWC), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW) def test_add_frame_image_uint8(image_dataset): dataset = image_dataset image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8) dataset.add_frame({"image": image, "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW) def test_add_frame_image_pil(image_dataset): dataset = image_dataset image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8) dataset.add_frame({"image": Image.fromarray(image), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW) def test_image_array_to_pil_image_wrong_range_float_0_255(): image = np.random.rand(*DUMMY_HWC) * 255 with pytest.raises(ValueError): image_array_to_pil_image(image) # TODO(aliberts): # - [ ] test various attributes & state from init and create # - [ ] test init with episodes and check num_frames # - [ ] test add_episode # - [ ] test push_to_hub # - [ ] test smaller methods # TODO(rcadene): # - [ ] fix code so that old test_factory + backward pass # - [ ] write new unit tests to test save_episode + getitem # - [ ] save_episode : case where new dataset, concatenate same file, write new file (meta/episodes, data, videos) # - [ ] # - [ ] remove old tests @pytest.mark.parametrize( "env_name, repo_id, policy_name", # Single dataset lerobot.env_dataset_policy_triplets, # Multi-dataset # TODO after fix multidataset # + [("aloha", ["lerobot/aloha_sim_insertion_human", "lerobot/aloha_sim_transfer_cube_human"], "act")], ) def test_factory(env_name, repo_id, policy_name): """ Tests that: - we can create a dataset with the factory. - for a commonly used set of data keys, the data dimensions are correct. """ cfg = TrainPipelineConfig( # TODO(rcadene, aliberts): remove dataset download dataset=DatasetConfig(repo_id=repo_id, episodes=[0]), env=make_env_config(env_name), policy=make_policy_config(policy_name), ) dataset = make_dataset(cfg) delta_timestamps = dataset.delta_timestamps camera_keys = dataset.meta.camera_keys item = dataset[0] keys_ndim_required = [ ("action", 1, True), ("episode_index", 0, True), ("frame_index", 0, True), ("timestamp", 0, True), # TODO(rcadene): should we rename it agent_pos? ("observation.state", 1, True), ("next.reward", 0, False), ("next.done", 0, False), ] # test number of dimensions for key, ndim, required in keys_ndim_required: if key not in item: if required: assert key in item, f"{key}" else: logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.') continue if delta_timestamps is not None and key in delta_timestamps: assert item[key].ndim == ndim + 1, f"{key}" assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}" else: assert item[key].ndim == ndim, f"{key}" if key in camera_keys: assert item[key].dtype == torch.float32, f"{key}" # TODO(rcadene): we assume for now that image normalization takes place in the model assert item[key].max() <= 1.0, f"{key}" assert item[key].min() >= 0.0, f"{key}" if delta_timestamps is not None and key in delta_timestamps: # test t,c,h,w assert item[key].shape[1] == 3, f"{key}" else: # test c,h,w assert item[key].shape[0] == 3, f"{key}" if delta_timestamps is not None: # test missing keys in delta_timestamps for key in delta_timestamps: assert key in item, f"{key}" # TODO(alexander-soare): If you're hunting for savings on testing time, this takes about 5 seconds. @pytest.mark.skip("TODO after fix multidataset") def test_multidataset_frames(): """Check that all dataset frames are incorporated.""" # Note: use the image variants of the dataset to make the test approx 3x faster. # Note: We really do need three repo_ids here as at some point this caught an issue with the chaining # logic that wouldn't be caught with two repo IDs. repo_ids = [ "lerobot/aloha_sim_insertion_human_image", "lerobot/aloha_sim_transfer_cube_human_image", "lerobot/aloha_sim_insertion_scripted_image", ] sub_datasets = [LeRobotDataset(repo_id) for repo_id in repo_ids] dataset = MultiLeRobotDataset(repo_ids) assert len(dataset) == sum(len(d) for d in sub_datasets) assert dataset.num_frames == sum(d.num_frames for d in sub_datasets) assert dataset.num_episodes == sum(d.num_episodes for d in sub_datasets) # Run through all items of the LeRobotDatasets in parallel with the items of the MultiLerobotDataset and # check they match. expected_dataset_indices = [] for i, sub_dataset in enumerate(sub_datasets): expected_dataset_indices.extend([i] * len(sub_dataset)) for expected_dataset_index, sub_dataset_item, dataset_item in zip( expected_dataset_indices, chain(*sub_datasets), dataset, strict=True ): dataset_index = dataset_item.pop("dataset_index") assert dataset_index == expected_dataset_index assert sub_dataset_item.keys() == dataset_item.keys() for k in sub_dataset_item: assert torch.equal(sub_dataset_item[k], dataset_item[k]) @pytest.mark.parametrize( "repo_id", [ "lerobot/pusht", "lerobot/aloha_sim_insertion_human", "lerobot/xarm_lift_medium", # (michel-aractingi) commenting the two datasets from openx as test is failing # "lerobot/nyu_franka_play_dataset", # "lerobot/cmu_stretch", ], ) @require_x86_64_kernel def test_backward_compatibility(repo_id): """The artifacts for this test have been generated by `tests/artifacts/datasets/save_dataset_to_safetensors.py`.""" # TODO(rcadene, aliberts): remove dataset download dataset = LeRobotDataset(repo_id, episodes=[0]) test_dir = Path("tests/artifacts/datasets") / repo_id def load_and_compare(i): new_frame = dataset[i] # noqa: B023 old_frame = load_file(test_dir / f"frame_{i}.safetensors") # noqa: B023 # ignore language instructions (if exists) in language conditioned datasets # TODO (michel-aractingi): transform language obs to language embeddings via tokenizer new_frame.pop("language_instruction", None) old_frame.pop("language_instruction", None) new_frame.pop("task", None) old_frame.pop("task", None) # Remove task_index to allow for backward compatibility # TODO(rcadene): remove when new features have been generated if "task_index" not in old_frame: del new_frame["task_index"] new_keys = set(new_frame.keys()) old_keys = set(old_frame.keys()) assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same" for key in new_frame: assert torch.isclose(new_frame[key], old_frame[key]).all(), ( f"{key=} for index={i} does not contain the same value" ) # test2 first frames of first episode i = dataset.meta.episodes["dataset_from_index"][0].item() load_and_compare(i) load_and_compare(i + 1) # test 2 frames at the middle of first episode i = int( ( dataset.meta.episodes["dataset_to_index"][0].item() - dataset.meta.episodes["dataset_from_index"][0].item() ) / 2 ) load_and_compare(i) load_and_compare(i + 1) # test 2 last frames of first episode i = dataset.meta.episodes["dataset_to_index"][0].item() load_and_compare(i - 2) load_and_compare(i - 1) # TODO(rcadene): Enable testing on second and last episode # We currently cant because our test dataset only contains the first episode # # test 2 first frames of second episode # i = dataset.meta.episodes["dataset_from_index"][1].item() # load_and_compare(i) # load_and_compare(i + 1) # # test 2 last frames of second episode # i = dataset.meta.episodes["dataset_to_index"][1].item() # load_and_compare(i - 2) # load_and_compare(i - 1) # # test 2 last frames of last episode # i = dataset.meta.episodes["dataset_to_index"][-1].item() # load_and_compare(i - 2) # load_and_compare(i - 1) @pytest.mark.skip("Requires internet access") def test_create_branch(): api = HfApi() repo_id = "cadene/test_create_branch" repo_type = "dataset" branch = "test" ref = f"refs/heads/{branch}" # Prepare a repo with a test branch api.delete_repo(repo_id, repo_type=repo_type, missing_ok=True) api.create_repo(repo_id, repo_type=repo_type) create_branch(repo_id, repo_type=repo_type, branch=branch) # Make sure the test branch exists branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches refs = [branch.ref for branch in branches] assert ref in refs # Overwrite it create_branch(repo_id, repo_type=repo_type, branch=branch) # Clean api.delete_repo(repo_id, repo_type=repo_type)