import numpy as np from xarm import Base class PegInBox(Base): def __init__(self): super().__init__("peg_in_box") def _reset_sim(self): self._act_magnitude = 0 super()._reset_sim() for _ in range(10): self._apply_action(np.array([0, 0, 0, 1], dtype=np.float32)) self.sim.step() @property def box(self): return self.sim.data.get_site_xpos("box_site") def is_success(self): return np.linalg.norm(self.obj - self.box) <= 0.05 def get_reward(self): dist_xy = np.linalg.norm(self.obj[:2] - self.box[:2]) dist_xyz = np.linalg.norm(self.obj - self.box) return float(dist_xy <= 0.045) * (2 - 6 * dist_xyz) - 0.2 * np.square(self._act_magnitude) - dist_xy def _get_obs(self): eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint") eef, box = self.eef - self.center_of_table, self.box - self.center_of_table obj = self.obj - self.center_of_table obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:] obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt obs = np.concatenate( [ eef, eef_velp, box, obj, obj_rot, obj_velp, obj_velr, eef - box, eef - obj, obj - box, np.array( [ np.linalg.norm(eef - box), np.linalg.norm(eef - obj), np.linalg.norm(obj - box), gripper_angle, ] ), ], axis=0, ) return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": box} def _sample_goal(self): # Gripper gripper_pos = np.array([1.280, 0.295, 0.9]) + self.np_random.uniform(-0.05, 0.05, size=3) super()._set_gripper(gripper_pos, self.gripper_rotation) # Object object_pos = gripper_pos - np.array([0, 0, 0.06]) + self.np_random.uniform(-0.005, 0.005, size=3) object_qpos = self.sim.data.get_joint_qpos("object_joint0") object_qpos[:3] = object_pos self.sim.data.set_joint_qpos("object_joint0", object_qpos) # Box box_pos = np.array([1.61, 0.18, 0.58]) box_pos[:2] += self.np_random.uniform(-0.11, 0.11, size=2) box_qpos = self.sim.data.get_joint_qpos("box_joint0") box_qpos[:3] = box_pos self.sim.data.set_joint_qpos("box_joint0", box_qpos) return self.box def step(self, action): self._act_magnitude = np.linalg.norm(action[:3]) return super().step(action)