import numpy as np from xarm import Base class Reach(Base): def __init__(self): super().__init__("reach") def _reset_sim(self): self._act_magnitude = 0 super()._reset_sim() def is_success(self): return np.linalg.norm(self.eef - self.goal) <= 0.05 def get_reward(self): dist = np.linalg.norm(self.eef - self.goal) penalty = self._act_magnitude**2 return -(dist + 0.15 * penalty) def _get_obs(self): eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint") eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table obs = np.concatenate( [eef, eef_velp, goal, eef - goal, np.array([np.linalg.norm(eef - goal), gripper_angle])], axis=0 ) return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal} def _sample_goal(self): # Gripper gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3) super()._set_gripper(gripper_pos, self.gripper_rotation) # Goal self.goal = np.array([1.550, 0.287, 0.580]) self.goal[:2] += self.np_random.uniform(-0.125, 0.125, size=2) self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal return self.goal def step(self, action): self._act_magnitude = np.linalg.norm(action[:3]) return super().step(action)