#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import torch from omegaconf import OmegaConf from lerobot.common.datasets.lerobot_dataset import LeRobotDataset def make_dataset( cfg, split="train", ): if cfg.env.name not in cfg.dataset_repo_id: logging.warning( f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your " f"environment ({cfg.env.name=})." ) delta_timestamps = cfg.training.get("delta_timestamps") if delta_timestamps is not None: for key in delta_timestamps: if isinstance(delta_timestamps[key], str): delta_timestamps[key] = eval(delta_timestamps[key]) # TODO(rcadene): add data augmentations dataset = LeRobotDataset( cfg.dataset_repo_id, split=split, delta_timestamps=delta_timestamps, ) if cfg.get("override_dataset_stats"): for key, stats_dict in cfg.override_dataset_stats.items(): for stats_type, listconfig in stats_dict.items(): # example of stats_type: min, max, mean, std stats = OmegaConf.to_container(listconfig, resolve=True) dataset.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32) return dataset