# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import datasets import pandas as pd import pyarrow.compute as pc import pyarrow.parquet as pq import pytest from lerobot.common.datasets.utils import ( write_episodes, write_hf_dataset, write_info, write_stats, write_tasks, ) @pytest.fixture(scope="session") def create_info(info_factory): def _create_info(dir: Path, info: dict | None = None): if info is None: info = info_factory() write_info(info, dir) return _create_info @pytest.fixture(scope="session") def create_stats(stats_factory): def _create_stats(dir: Path, stats: dict | None = None): if stats is None: stats = stats_factory() write_stats(stats, dir) return _create_stats @pytest.fixture(scope="session") def create_tasks(tasks_factory): def _create_tasks(dir: Path, tasks: pd.DataFrame | None = None): if tasks is None: tasks = tasks_factory() write_tasks(tasks, dir) return _create_tasks @pytest.fixture(scope="session") def create_episodes(episodes_factory): def _create_episodes(dir: Path, episodes: datasets.Dataset | None = None): if episodes is None: # TODO(rcadene): add features, fps as arguments episodes = episodes_factory() write_episodes(episodes, dir) return _create_episodes @pytest.fixture(scope="session") def create_hf_dataset(hf_dataset_factory): def _create_hf_dataset(dir: Path, hf_dataset: datasets.Dataset | None = None): if hf_dataset is None: hf_dataset = hf_dataset_factory() write_hf_dataset(hf_dataset, dir) return _create_hf_dataset @pytest.fixture(scope="session") def single_episode_parquet_path(hf_dataset_factory, info_factory): def _create_single_episode_parquet( dir: Path, ep_idx: int = 0, hf_dataset: datasets.Dataset | None = None, info: dict | None = None ) -> Path: raise NotImplementedError() if info is None: info = info_factory() if hf_dataset is None: hf_dataset = hf_dataset_factory() data_path = info["data_path"] chunks_size = info["chunks_size"] ep_chunk = ep_idx // chunks_size fpath = dir / data_path.format(episode_chunk=ep_chunk, episode_index=ep_idx) fpath.parent.mkdir(parents=True, exist_ok=True) table = hf_dataset.data.table ep_table = table.filter(pc.equal(table["episode_index"], ep_idx)) pq.write_table(ep_table, fpath) return fpath return _create_single_episode_parquet @pytest.fixture(scope="session") def multi_episode_parquet_path(hf_dataset_factory, info_factory): def _create_multi_episode_parquet( dir: Path, hf_dataset: datasets.Dataset | None = None, info: dict | None = None ) -> Path: raise NotImplementedError() if info is None: info = info_factory() if hf_dataset is None: hf_dataset = hf_dataset_factory() data_path = info["data_path"] chunks_size = info["chunks_size"] total_episodes = info["total_episodes"] for ep_idx in range(total_episodes): ep_chunk = ep_idx // chunks_size fpath = dir / data_path.format(episode_chunk=ep_chunk, episode_index=ep_idx) fpath.parent.mkdir(parents=True, exist_ok=True) table = hf_dataset.data.table ep_table = table.filter(pc.equal(table["episode_index"], ep_idx)) pq.write_table(ep_table, fpath) return dir / "data" return _create_multi_episode_parquet