import importlib import gymnasium as gym import pytest import torch from gymnasium.utils.env_checker import check_env import lerobot from lerobot.common.envs.factory import make_env from lerobot.common.envs.utils import preprocess_observation from lerobot.common.utils.utils import init_hydra_config from .utils import DEFAULT_CONFIG_PATH, DEVICE, require_env OBS_TYPES = ["state", "pixels", "pixels_agent_pos"] @pytest.mark.parametrize("obs_type", OBS_TYPES) @pytest.mark.parametrize("env_name, env_task", lerobot.env_task_pairs) @require_env def test_env(env_name, env_task, obs_type): if env_name == "aloha" and obs_type == "state": pytest.skip("`state` observations not available for aloha") package_name = f"gym_{env_name}" importlib.import_module(package_name) env = gym.make(f"{package_name}/{env_task}", obs_type=obs_type) check_env(env.unwrapped, skip_render_check=True) env.close() @pytest.mark.parametrize("env_name", lerobot.available_envs) @require_env def test_factory(env_name): cfg = init_hydra_config( DEFAULT_CONFIG_PATH, overrides=[f"env={env_name}", f"device={DEVICE}"], ) env = make_env(cfg, n_envs=1) obs, _ = env.reset() obs = preprocess_observation(obs) # test image keys are float32 in range [0,1] for key in obs: if "image" not in key: continue img = obs[key] assert img.dtype == torch.float32 # TODO(rcadene): we assume for now that image normalization takes place in the model assert img.max() <= 1.0 assert img.min() >= 0.0 env.close()