#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datasets import Dataset from lerobot.common.datasets.sampler import EpisodeAwareSampler from lerobot.common.datasets.utils import ( calculate_episode_data_index, hf_transform_to_torch, ) def test_drop_n_first_frames(): dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], "index": [0, 1, 2, 3, 4, 5], "episode_index": [0, 0, 1, 2, 2, 2], }, ) dataset.set_transform(hf_transform_to_torch) episode_data_index = calculate_episode_data_index(dataset) sampler = EpisodeAwareSampler(episode_data_index, drop_n_first_frames=1) assert sampler.indices == [1, 4, 5] assert len(sampler) == 3 assert list(sampler) == [1, 4, 5] def test_drop_n_last_frames(): dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], "index": [0, 1, 2, 3, 4, 5], "episode_index": [0, 0, 1, 2, 2, 2], }, ) dataset.set_transform(hf_transform_to_torch) episode_data_index = calculate_episode_data_index(dataset) sampler = EpisodeAwareSampler(episode_data_index, drop_n_last_frames=1) assert sampler.indices == [0, 3, 4] assert len(sampler) == 3 assert list(sampler) == [0, 3, 4] def test_episode_indices_to_use(): dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], "index": [0, 1, 2, 3, 4, 5], "episode_index": [0, 0, 1, 2, 2, 2], }, ) dataset.set_transform(hf_transform_to_torch) episode_data_index = calculate_episode_data_index(dataset) sampler = EpisodeAwareSampler(episode_data_index, episode_indices_to_use=[0, 2]) assert sampler.indices == [0, 1, 3, 4, 5] assert len(sampler) == 5 assert list(sampler) == [0, 1, 3, 4, 5] def test_shuffle(): dataset = Dataset.from_dict( { "timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], "index": [0, 1, 2, 3, 4, 5], "episode_index": [0, 0, 1, 2, 2, 2], }, ) dataset.set_transform(hf_transform_to_torch) episode_data_index = calculate_episode_data_index(dataset) sampler = EpisodeAwareSampler(episode_data_index, shuffle=False) assert sampler.indices == [0, 1, 2, 3, 4, 5] assert len(sampler) == 6 assert list(sampler) == [0, 1, 2, 3, 4, 5] sampler = EpisodeAwareSampler(episode_data_index, shuffle=True) assert sampler.indices == [0, 1, 2, 3, 4, 5] assert len(sampler) == 6 assert set(sampler) == {0, 1, 2, 3, 4, 5}