#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch import Tensor, nn from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature def create_stats_buffers( features: dict[str, PolicyFeature], norm_map: dict[str, NormalizationMode], stats: dict[str, dict[str, Tensor]] | None = None, ) -> dict[str, dict[str, nn.ParameterDict]]: """ Create buffers per modality (e.g. "observation.image", "action") containing their mean, std, min, max statistics. Args: (see Normalize and Unnormalize) Returns: dict: A dictionary where keys are modalities and values are `nn.ParameterDict` containing `nn.Parameters` set to `requires_grad=False`, suitable to not be updated during backpropagation. """ stats_buffers = {} for key, ft in features.items(): norm_mode = norm_map.get(ft.type, NormalizationMode.IDENTITY) if norm_mode is NormalizationMode.IDENTITY: continue assert isinstance(norm_mode, NormalizationMode) shape = tuple(ft.shape) if ft.type is FeatureType.VISUAL: # sanity checks assert len(shape) == 3, f"number of dimensions of {key} != 3 ({shape=}" c, h, w = shape assert c < h and c < w, f"{key} is not channel first ({shape=})" # override image shape to be invariant to height and width shape = (c, 1, 1) # Note: we initialize mean, std, min, max to infinity. They should be overwritten # downstream by `stats` or `policy.load_state_dict`, as expected. During forward, # we assert they are not infinity anymore. buffer = {} if norm_mode is NormalizationMode.MEAN_STD: mean = torch.ones(shape, dtype=torch.float32) * torch.inf std = torch.ones(shape, dtype=torch.float32) * torch.inf buffer = nn.ParameterDict( { "mean": nn.Parameter(mean, requires_grad=False), "std": nn.Parameter(std, requires_grad=False), } ) elif norm_mode is NormalizationMode.MIN_MAX: min = torch.ones(shape, dtype=torch.float32) * torch.inf max = torch.ones(shape, dtype=torch.float32) * torch.inf buffer = nn.ParameterDict( { "min": nn.Parameter(min, requires_grad=False), "max": nn.Parameter(max, requires_grad=False), } ) # TODO(aliberts, rcadene): harmonize this to only use one framework (np or torch) if stats and key in stats: if norm_mode is NormalizationMode.MEAN_STD: if "mean" not in stats[key] or "std" not in stats[key]: raise ValueError( f"Missing 'mean' or 'std' in stats for key {key} with MEAN_STD normalization" ) if isinstance(stats[key]["mean"], np.ndarray): buffer["mean"].data = torch.from_numpy(stats[key]["mean"]).to(dtype=torch.float32) buffer["std"].data = torch.from_numpy(stats[key]["std"]).to(dtype=torch.float32) elif isinstance(stats[key]["mean"], torch.Tensor): # Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated # tensors anywhere (for example, when we use the same stats for normalization and # unnormalization). See the logic here # https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97. buffer["mean"].data = stats[key]["mean"].clone().to(dtype=torch.float32) buffer["std"].data = stats[key]["std"].clone().to(dtype=torch.float32) else: type_ = type(stats[key]["mean"]) raise ValueError( f"np.ndarray or torch.Tensor expected for 'mean', but type is '{type_}' instead." ) elif norm_mode is NormalizationMode.MIN_MAX: if "min" not in stats[key] or "max" not in stats[key]: raise ValueError( f"Missing 'min' or 'max' in stats for key {key} with MIN_MAX normalization" ) if isinstance(stats[key]["min"], np.ndarray): buffer["min"].data = torch.from_numpy(stats[key]["min"]).to(dtype=torch.float32) buffer["max"].data = torch.from_numpy(stats[key]["max"]).to(dtype=torch.float32) elif isinstance(stats[key]["min"], torch.Tensor): buffer["min"].data = stats[key]["min"].clone().to(dtype=torch.float32) buffer["max"].data = stats[key]["max"].clone().to(dtype=torch.float32) else: type_ = type(stats[key]["min"]) raise ValueError( f"np.ndarray or torch.Tensor expected for 'min', but type is '{type_}' instead." ) stats_buffers[key] = buffer return stats_buffers def _no_stats_error_str(name: str) -> str: return ( f"`{name}` is infinity. You should either initialize with `stats` as an argument, or use a " "pretrained model." ) class Normalize(nn.Module): """Normalizes data (e.g. "observation.image") for more stable and faster convergence during training.""" def __init__( self, features: dict[str, PolicyFeature], norm_map: dict[str, NormalizationMode], stats: dict[str, dict[str, Tensor]] | None = None, ): """ Args: shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values are their shapes (e.g. `[3,96,96]`]). These shapes are used to create the tensor buffer containing mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape is adjusted to be invariant to height and width, assuming a channel-first (c, h, w) format. modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values are their normalization modes among: - "mean_std": subtract the mean and divide by standard deviation. - "min_max": map to [-1, 1] range. stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image") and values are dictionaries of statistic types and their values (e.g. `{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for training the model for the first time, these statistics will overwrite the default buffers. If not provided, as expected for finetuning or evaluation, the default buffers should to be overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the dataset is not needed to get the stats, since they are already in the policy state_dict. """ super().__init__() self.features = features self.norm_map = norm_map self.stats = stats stats_buffers = create_stats_buffers(features, norm_map, stats) for key, buffer in stats_buffers.items(): setattr(self, "buffer_" + key.replace(".", "_"), buffer) # TODO(rcadene): should we remove torch.no_grad? # @torch.no_grad def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]: batch = dict(batch) # shallow copy avoids mutating the input batch for key, ft in self.features.items(): if key not in batch: # FIXME(aliberts, rcadene): This might lead to silent fail! # NOTE: (azouitine) This continues help us for instantiation SACPolicy continue norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY) if norm_mode is NormalizationMode.IDENTITY: continue buffer = getattr(self, "buffer_" + key.replace(".", "_")) if norm_mode is NormalizationMode.MEAN_STD: mean = buffer["mean"] std = buffer["std"] assert not torch.isinf(mean).any(), _no_stats_error_str("mean") assert not torch.isinf(std).any(), _no_stats_error_str("std") batch[key] = (batch[key] - mean) / (std + 1e-8) elif norm_mode is NormalizationMode.MIN_MAX: min = buffer["min"] max = buffer["max"] assert not torch.isinf(min).any(), _no_stats_error_str("min") assert not torch.isinf(max).any(), _no_stats_error_str("max") # normalize to [0,1] batch[key] = (batch[key] - min) / (max - min + 1e-8) # normalize to [-1, 1] batch[key] = batch[key] * 2 - 1 else: raise ValueError(norm_mode) return batch class Unnormalize(nn.Module): """ Similar to `Normalize` but unnormalizes output data (e.g. `{"action": torch.randn(b,c)}`) in their original range used by the environment. """ def __init__( self, features: dict[str, PolicyFeature], norm_map: dict[str, NormalizationMode], stats: dict[str, dict[str, Tensor]] | None = None, ): """ Args: shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values are their shapes (e.g. `[3,96,96]`]). These shapes are used to create the tensor buffer containing mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape is adjusted to be invariant to height and width, assuming a channel-first (c, h, w) format. modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values are their normalization modes among: - "mean_std": subtract the mean and divide by standard deviation. - "min_max": map to [-1, 1] range. stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image") and values are dictionaries of statistic types and their values (e.g. `{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for training the model for the first time, these statistics will overwrite the default buffers. If not provided, as expected for finetuning or evaluation, the default buffers should to be overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the dataset is not needed to get the stats, since they are already in the policy state_dict. """ super().__init__() self.features = features self.norm_map = norm_map self.stats = stats # `self.buffer_observation_state["mean"]` contains `torch.tensor(state_dim)` stats_buffers = create_stats_buffers(features, norm_map, stats) for key, buffer in stats_buffers.items(): setattr(self, "buffer_" + key.replace(".", "_"), buffer) # TODO(rcadene): should we remove torch.no_grad? # @torch.no_grad def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]: batch = dict(batch) # shallow copy avoids mutating the input batch for key, ft in self.features.items(): if key not in batch: continue norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY) if norm_mode is NormalizationMode.IDENTITY: continue buffer = getattr(self, "buffer_" + key.replace(".", "_")) if norm_mode is NormalizationMode.MEAN_STD: mean = buffer["mean"] std = buffer["std"] assert not torch.isinf(mean).any(), _no_stats_error_str("mean") assert not torch.isinf(std).any(), _no_stats_error_str("std") batch[key] = batch[key] * std + mean elif norm_mode is NormalizationMode.MIN_MAX: min = buffer["min"] max = buffer["max"] assert not torch.isinf(min).any(), _no_stats_error_str("min") assert not torch.isinf(max).any(), _no_stats_error_str("max") batch[key] = (batch[key] + 1) / 2 batch[key] = batch[key] * (max - min) + min else: raise ValueError(norm_mode) return batch