#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import time from contextlib import nullcontext from pprint import pformat from typing import Any import torch from termcolor import colored from torch.amp import GradScaler from torch.optim import Optimizer from lerobot.common.datasets.factory import make_dataset from lerobot.common.datasets.sampler import EpisodeAwareSampler from lerobot.common.datasets.utils import cycle from lerobot.common.envs.factory import make_env from lerobot.common.optim.factory import make_optimizer_and_scheduler from lerobot.common.policies.factory import make_policy from lerobot.common.policies.pretrained import PreTrainedPolicy from lerobot.common.policies.utils import get_device_from_parameters from lerobot.common.utils.logging_utils import AverageMeter, MetricsTracker from lerobot.common.utils.random_utils import set_seed from lerobot.common.utils.train_utils import ( get_step_checkpoint_dir, get_step_identifier, load_training_state, save_checkpoint, update_last_checkpoint, ) from lerobot.common.utils.utils import ( format_big_number, get_safe_torch_device, has_method, init_logging, ) from lerobot.common.utils.wandb_utils import WandBLogger from lerobot.configs import parser from lerobot.configs.train import TrainPipelineConfig from lerobot.scripts.eval import eval_policy def update_policy( train_metrics: MetricsTracker, policy: PreTrainedPolicy, batch: Any, optimizer: Optimizer, grad_clip_norm: float, grad_scaler: GradScaler, lr_scheduler=None, use_amp: bool = False, lock=None, ) -> tuple[MetricsTracker, dict]: start_time = time.perf_counter() device = get_device_from_parameters(policy) policy.train() with torch.autocast(device_type=device.type) if use_amp else nullcontext(): loss, output_dict = policy.forward(batch) # TODO(rcadene): policy.unnormalize_outputs(out_dict) grad_scaler.scale(loss).backward() # Unscale the gradient of the optimizer's assigned params in-place **prior to gradient clipping**. grad_scaler.unscale_(optimizer) grad_norm = torch.nn.utils.clip_grad_norm_( policy.parameters(), grad_clip_norm, error_if_nonfinite=False, ) # Optimizer's gradients are already unscaled, so scaler.step does not unscale them, # although it still skips optimizer.step() if the gradients contain infs or NaNs. with lock if lock is not None else nullcontext(): grad_scaler.step(optimizer) # Updates the scale for next iteration. grad_scaler.update() optimizer.zero_grad() # Step through pytorch scheduler at every batch instead of epoch if lr_scheduler is not None: lr_scheduler.step() if has_method(policy, "update"): # To possibly update an internal buffer (for instance an Exponential Moving Average like in TDMPC). policy.update() train_metrics.loss = loss.item() train_metrics.grad_norm = grad_norm.item() train_metrics.lr = optimizer.param_groups[0]["lr"] train_metrics.update_s = time.perf_counter() - start_time return train_metrics, output_dict @parser.wrap() def train(cfg: TrainPipelineConfig): cfg.validate() logging.info(pformat(cfg.to_dict())) if cfg.wandb.enable and cfg.wandb.project: wandb_logger = WandBLogger(cfg) else: wandb_logger = None logging.info(colored("Logs will be saved locally.", "yellow", attrs=["bold"])) if cfg.seed is not None: set_seed(cfg.seed) # Check device is available device = get_safe_torch_device(cfg.policy.device, log=True) torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True logging.info("Creating dataset") dataset = make_dataset(cfg) # Create environment used for evaluating checkpoints during training on simulation data. # On real-world data, no need to create an environment as evaluations are done outside train.py, # using the eval.py instead, with gym_dora environment and dora-rs. eval_env = None if cfg.eval_freq > 0 and cfg.env is not None: logging.info("Creating env") eval_env = make_env(cfg.env, n_envs=cfg.eval.batch_size) logging.info("Creating policy") policy = make_policy( cfg=cfg.policy, ds_meta=dataset.meta, ) logging.info("Creating optimizer and scheduler") optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy) grad_scaler = GradScaler(device.type, enabled=cfg.policy.use_amp) step = 0 # number of policy updates (forward + backward + optim) if cfg.resume: step, optimizer, lr_scheduler = load_training_state(cfg.checkpoint_path, optimizer, lr_scheduler) num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad) num_total_params = sum(p.numel() for p in policy.parameters()) logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {cfg.output_dir}") if cfg.env is not None: logging.info(f"{cfg.env.task=}") logging.info(f"{cfg.steps=} ({format_big_number(cfg.steps)})") logging.info(f"{dataset.num_frames=} ({format_big_number(dataset.num_frames)})") logging.info(f"{dataset.num_episodes=}") logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})") logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})") # create dataloader for offline training if hasattr(cfg.policy, "drop_n_last_frames"): shuffle = False sampler = EpisodeAwareSampler( dataset.episode_data_index, drop_n_last_frames=cfg.policy.drop_n_last_frames, shuffle=True, ) else: shuffle = True sampler = None dataloader = torch.utils.data.DataLoader( dataset, num_workers=cfg.num_workers, batch_size=cfg.batch_size, shuffle=shuffle, sampler=sampler, pin_memory=device.type != "cpu", drop_last=False, ) dl_iter = cycle(dataloader) policy.train() train_metrics = { "loss": AverageMeter("loss", ":.3f"), "grad_norm": AverageMeter("grdn", ":.3f"), "lr": AverageMeter("lr", ":0.1e"), "update_s": AverageMeter("updt_s", ":.3f"), "dataloading_s": AverageMeter("data_s", ":.3f"), } train_tracker = MetricsTracker( cfg.batch_size, dataset.num_frames, dataset.num_episodes, train_metrics, initial_step=step ) logging.info("Start offline training on a fixed dataset") for _ in range(step, cfg.steps): start_time = time.perf_counter() batch = next(dl_iter) train_tracker.dataloading_s = time.perf_counter() - start_time for key in batch: if isinstance(batch[key], torch.Tensor): batch[key] = batch[key].to(device, non_blocking=True) train_tracker, output_dict = update_policy( train_tracker, policy, batch, optimizer, cfg.optimizer.grad_clip_norm, grad_scaler=grad_scaler, lr_scheduler=lr_scheduler, use_amp=cfg.policy.use_amp, ) # Note: eval and checkpoint happens *after* the `step`th training update has completed, so we # increment `step` here. step += 1 train_tracker.step() is_log_step = cfg.log_freq > 0 and step % cfg.log_freq == 0 is_saving_step = step % cfg.save_freq == 0 or step == cfg.steps is_eval_step = cfg.eval_freq > 0 and step % cfg.eval_freq == 0 if is_log_step: logging.info(train_tracker) if wandb_logger: wandb_log_dict = train_tracker.to_dict() if output_dict: wandb_log_dict.update(output_dict) wandb_logger.log_dict(wandb_log_dict, step) train_tracker.reset_averages() if cfg.save_checkpoint and is_saving_step: logging.info(f"Checkpoint policy after step {step}") checkpoint_dir = get_step_checkpoint_dir(cfg.output_dir, cfg.steps, step) save_checkpoint(checkpoint_dir, step, cfg, policy, optimizer, lr_scheduler) update_last_checkpoint(checkpoint_dir) if wandb_logger: wandb_logger.log_policy(checkpoint_dir) if cfg.env and is_eval_step: step_id = get_step_identifier(step, cfg.steps) logging.info(f"Eval policy at step {step}") with ( torch.no_grad(), torch.autocast(device_type=device.type) if cfg.policy.use_amp else nullcontext(), ): eval_info = eval_policy( eval_env, policy, cfg.eval.n_episodes, videos_dir=cfg.output_dir / "eval" / f"videos_step_{step_id}", max_episodes_rendered=4, start_seed=cfg.seed, ) eval_metrics = { "avg_sum_reward": AverageMeter("∑rwrd", ":.3f"), "pc_success": AverageMeter("success", ":.1f"), "eval_s": AverageMeter("eval_s", ":.3f"), } eval_tracker = MetricsTracker( cfg.batch_size, dataset.num_frames, dataset.num_episodes, eval_metrics, initial_step=step ) eval_tracker.eval_s = eval_info["aggregated"].pop("eval_s") eval_tracker.avg_sum_reward = eval_info["aggregated"].pop("avg_sum_reward") eval_tracker.pc_success = eval_info["aggregated"].pop("pc_success") logging.info(eval_tracker) if wandb_logger: wandb_log_dict = {**eval_tracker.to_dict(), **eval_info} wandb_logger.log_dict(wandb_log_dict, step, mode="eval") wandb_logger.log_video(eval_info["video_paths"][0], step, mode="eval") if eval_env: eval_env.close() logging.info("End of training") if __name__ == "__main__": init_logging() train()