""" This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and transforms are applied to the observation images before they are returned in the dataset's __get_item__. """ from pathlib import Path from torchvision.transforms import ToPILImage, v2 from lerobot.common.datasets.lerobot_dataset import LeRobotDataset dataset_repo_id = "lerobot/aloha_static_tape" # Create a LeRobotDataset with no transformations dataset = LeRobotDataset(dataset_repo_id) # This is equivalent to `dataset = LeRobotDataset(dataset_repo_id, image_transforms=None)` # Get the index of the first observation in the first episode first_idx = dataset.episode_data_index["from"][0].item() # Get the frame corresponding to the first camera frame = dataset[first_idx][dataset.camera_keys[0]] # Define the transformations transforms = v2.Compose( [ v2.ColorJitter(brightness=(0.5, 1.5)), v2.ColorJitter(contrast=(0.5, 1.5)), v2.RandomAdjustSharpness(sharpness_factor=2, p=1), ] ) # Create another LeRobotDataset with the defined transformations transformed_dataset = LeRobotDataset(dataset_repo_id, image_transforms=transforms) # Get a frame from the transformed dataset transformed_frame = transformed_dataset[first_idx][transformed_dataset.camera_keys[0]] # Create a directory to store output images output_dir = Path("outputs/image_transforms") output_dir.mkdir(parents=True, exist_ok=True) # Save the original frame to_pil = ToPILImage() to_pil(frame).save(output_dir / "original_frame.png", quality=100) print(f"Original frame saved to {output_dir / 'original_frame.png'}.") # Save the transformed frame to_pil(transformed_frame).save(output_dir / "transformed_frame.png", quality=100) print(f"Transformed frame saved to {output_dir / 'transformed_frame.png'}.")