# @package _global_ # Defaults for training for the PushT dataset as per https://github.com/real-stanford/diffusion_policy. # Note: We do not track EMA model weights as we discovered it does not improve the results. See # https://github.com/huggingface/lerobot/pull/134 for more details. seed: 100000 dataset_repo_id: lerobot/pusht training: offline_steps: 200000 online_steps: 0 eval_freq: 5000 save_freq: 5000 log_freq: 250 save_model: true batch_size: 64 grad_clip_norm: 10 lr: 1.0e-4 lr_scheduler: cosine lr_warmup_steps: 500 adam_betas: [0.95, 0.999] adam_eps: 1.0e-8 adam_weight_decay: 1.0e-6 online_steps_between_rollouts: 1 delta_timestamps: observation.image: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]" observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]" action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1 - ${policy.n_obs_steps} + ${policy.horizon})]" eval: n_episodes: 50 batch_size: 50 override_dataset_stats: # TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model? observation.image: mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1) std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1) # TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model # from the original codebase, but we should remove these and train our own pretrained model observation.state: min: [13.456424, 32.938293] max: [496.14618, 510.9579] action: min: [12.0, 25.0] max: [511.0, 511.0] policy: name: diffusion # Input / output structure. n_obs_steps: 2 horizon: 16 n_action_steps: 8 input_shapes: # TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env? observation.image: [3, 96, 96] observation.state: ["${env.state_dim}"] output_shapes: action: ["${env.action_dim}"] # Normalization / Unnormalization input_normalization_modes: observation.image: mean_std observation.state: min_max output_normalization_modes: action: min_max # Architecture / modeling. # Vision backbone. vision_backbone: resnet18 crop_shape: [84, 84] crop_is_random: True pretrained_backbone_weights: null use_group_norm: True spatial_softmax_num_keypoints: 32 # Unet. down_dims: [512, 1024, 2048] kernel_size: 5 n_groups: 8 diffusion_step_embed_dim: 128 use_film_scale_modulation: True # Noise scheduler. num_train_timesteps: 100 beta_schedule: squaredcos_cap_v2 beta_start: 0.0001 beta_end: 0.02 prediction_type: epsilon # epsilon / sample clip_sample: True clip_sample_range: 1.0 # Inference num_inference_steps: 100 # Loss computation do_mask_loss_for_padding: false