# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from lerobot.common.utils.logging_utils import AverageMeter, MetricsTracker @pytest.fixture def mock_metrics(): return {"loss": AverageMeter("loss", ":.3f"), "accuracy": AverageMeter("accuracy", ":.2f")} def test_average_meter_initialization(): meter = AverageMeter("loss", ":.2f") assert meter.name == "loss" assert meter.fmt == ":.2f" assert meter.val == 0.0 assert meter.avg == 0.0 assert meter.sum == 0.0 assert meter.count == 0.0 def test_average_meter_update(): meter = AverageMeter("accuracy") meter.update(5, n=2) assert meter.val == 5 assert meter.sum == 10 assert meter.count == 2 assert meter.avg == 5 def test_average_meter_reset(): meter = AverageMeter("loss") meter.update(3, 4) meter.reset() assert meter.val == 0.0 assert meter.avg == 0.0 assert meter.sum == 0.0 assert meter.count == 0.0 def test_average_meter_str(): meter = AverageMeter("metric", ":.1f") meter.update(4.567, 3) assert str(meter) == "metric:4.6" def test_metrics_tracker_initialization(mock_metrics): tracker = MetricsTracker( batch_size=32, num_frames=1000, num_episodes=50, metrics=mock_metrics, initial_step=10 ) assert tracker.steps == 10 assert tracker.samples == 10 * 32 assert tracker.episodes == tracker.samples / (1000 / 50) assert tracker.epochs == tracker.samples / 1000 assert "loss" in tracker.metrics assert "accuracy" in tracker.metrics def test_metrics_tracker_step(mock_metrics): tracker = MetricsTracker( batch_size=32, num_frames=1000, num_episodes=50, metrics=mock_metrics, initial_step=5 ) tracker.step() assert tracker.steps == 6 assert tracker.samples == 6 * 32 assert tracker.episodes == tracker.samples / (1000 / 50) assert tracker.epochs == tracker.samples / 1000 def test_metrics_tracker_getattr(mock_metrics): tracker = MetricsTracker(batch_size=32, num_frames=1000, num_episodes=50, metrics=mock_metrics) assert tracker.loss == mock_metrics["loss"] assert tracker.accuracy == mock_metrics["accuracy"] with pytest.raises(AttributeError): _ = tracker.non_existent_metric def test_metrics_tracker_setattr(mock_metrics): tracker = MetricsTracker(batch_size=32, num_frames=1000, num_episodes=50, metrics=mock_metrics) tracker.loss = 2.0 assert tracker.loss.val == 2.0 def test_metrics_tracker_str(mock_metrics): tracker = MetricsTracker(batch_size=32, num_frames=1000, num_episodes=50, metrics=mock_metrics) tracker.loss.update(3.456, 1) tracker.accuracy.update(0.876, 1) output = str(tracker) assert "loss:3.456" in output assert "accuracy:0.88" in output def test_metrics_tracker_to_dict(mock_metrics): tracker = MetricsTracker(batch_size=32, num_frames=1000, num_episodes=50, metrics=mock_metrics) tracker.loss.update(5, 2) metrics_dict = tracker.to_dict() assert isinstance(metrics_dict, dict) assert metrics_dict["loss"] == 5 # average value assert metrics_dict["steps"] == tracker.steps def test_metrics_tracker_reset_averages(mock_metrics): tracker = MetricsTracker(batch_size=32, num_frames=1000, num_episodes=50, metrics=mock_metrics) tracker.loss.update(10, 3) tracker.accuracy.update(0.95, 5) tracker.reset_averages() assert tracker.loss.avg == 0.0 assert tracker.accuracy.avg == 0.0