import logging from pathlib import Path import torch from tensordict.nn import TensorDictModule from lerobot.common.datasets.factory import make_offline_buffer from lerobot.common.envs.factory import make_env from lerobot.common.logger import log_output_dir from lerobot.common.policies.factory import make_policy from lerobot.common.utils import get_safe_torch_device, init_logging, set_seed from lerobot.scripts.eval import eval_policy def download_eval_pretrained(out_dir, cfg): if out_dir is None: raise NotImplementedError() init_logging() # Check device is available get_safe_torch_device(cfg.device, log=True) torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True set_seed(cfg.seed) log_output_dir(out_dir) logging.info("make_offline_buffer") offline_buffer = make_offline_buffer(cfg) logging.info("make_env") env = make_env(cfg, transform=offline_buffer.transform) if cfg.policy.pretrained_model_path: policy = make_policy(cfg) policy = TensorDictModule( policy, in_keys=["observation", "step_count"], out_keys=["action"], ) else: # when policy is None, rollout a random policy policy = None metrics = eval_policy( env, policy=policy, save_video=True, video_dir=Path(out_dir) / "eval", fps=cfg.env.fps, max_steps=cfg.env.episode_length, num_episodes=cfg.eval_episodes, ) print(metrics) logging.info("End of eval") if __name__ == "__main__": download_eval_pretrained()