# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for physical robots and their mocked versions. If the physical robots are not connected to the computer, or not working, the test will be skipped. Example of running a specific test: ```bash pytest -sx tests/test_robots.py::test_robot ``` Example of running test on real robots connected to the computer: ```bash pytest -sx 'tests/test_robots.py::test_robot[koch-False]' pytest -sx 'tests/test_robots.py::test_robot[koch_bimanual-False]' pytest -sx 'tests/test_robots.py::test_robot[aloha-False]' ``` Example of running test on a mocked version of robots: ```bash pytest -sx 'tests/test_robots.py::test_robot[koch-True]' pytest -sx 'tests/test_robots.py::test_robot[koch_bimanual-True]' pytest -sx 'tests/test_robots.py::test_robot[aloha-True]' ``` """ import pytest import torch from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError from lerobot.common.robots.utils import make_robot from tests.utils import TEST_ROBOT_TYPES, mock_calibration_dir, require_robot @pytest.mark.parametrize("robot_type, mock", TEST_ROBOT_TYPES) @require_robot def test_robot(tmp_path, request, robot_type, mock): # TODO(rcadene): measure fps in nightly? # TODO(rcadene): test logs # TODO(rcadene): add compatibility with other robots robot_kwargs = {"robot_type": robot_type, "mock": mock} if robot_type == "aloha" and mock: # To simplify unit test, we do not rerun manual calibration for Aloha mock=True. # Instead, we use the files from '.cache/calibration/aloha_default' pass else: if mock: request.getfixturevalue("patch_builtins_input") # Create an empty calibration directory to trigger manual calibration calibration_dir = tmp_path / robot_type mock_calibration_dir(calibration_dir) robot_kwargs["calibration_dir"] = calibration_dir # Test using robot before connecting raises an error robot = make_robot(**robot_kwargs) with pytest.raises(DeviceNotConnectedError): robot.teleop_step() with pytest.raises(DeviceNotConnectedError): robot.teleop_step(record_data=True) with pytest.raises(DeviceNotConnectedError): robot.capture_observation() with pytest.raises(DeviceNotConnectedError): robot.send_action(None) with pytest.raises(DeviceNotConnectedError): robot.disconnect() # Test deleting the object without connecting first del robot # Test connecting (triggers manual calibration) robot = make_robot(**robot_kwargs) robot.connect() assert robot.is_connected # Test connecting twice raises an error with pytest.raises(DeviceAlreadyConnectedError): robot.connect() # TODO(rcadene, aliberts): Test disconnecting with `__del__` instead of `disconnect` # del robot robot.disconnect() # Test teleop can run robot = make_robot(**robot_kwargs) robot.connect() robot.teleop_step() # Test data recorded during teleop are well formatted observation, action = robot.teleop_step(record_data=True) # State assert "observation.state" in observation assert isinstance(observation["observation.state"], torch.Tensor) assert observation["observation.state"].ndim == 1 dim_state = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms) assert observation["observation.state"].shape[0] == dim_state # Cameras for name in robot.cameras: assert f"observation.images.{name}" in observation assert isinstance(observation[f"observation.images.{name}"], torch.Tensor) assert observation[f"observation.images.{name}"].ndim == 3 # Action assert "action" in action assert isinstance(action["action"], torch.Tensor) assert action["action"].ndim == 1 dim_action = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms) assert action["action"].shape[0] == dim_action # TODO(rcadene): test if observation and action data are returned as expected # Test capture_observation can run and observation returned are the same (since the arm didnt move) captured_observation = robot.capture_observation() assert set(captured_observation.keys()) == set(observation.keys()) for name in captured_observation: if "image" in name: # TODO(rcadene): skipping image for now as it's challenging to assess equality between two consecutive frames continue torch.testing.assert_close(captured_observation[name], observation[name], rtol=1e-4, atol=1) assert captured_observation[name].shape == observation[name].shape # Test send_action can run robot.send_action(action["action"]) # Test disconnecting robot.disconnect() assert not robot.is_connected for name in robot.follower_arms: assert not robot.follower_arms[name].is_connected for name in robot.leader_arms: assert not robot.leader_arms[name].is_connected for name in robot.cameras: assert not robot.cameras[name].is_connected