import importlib import gymnasium as gym def make_env(cfg, num_parallel_envs=0) -> gym.Env | gym.vector.SyncVectorEnv: """ Note: When `num_parallel_envs > 0`, this function returns a `SyncVectorEnv` which takes batched action as input and returns batched observation, reward, terminated, truncated of `num_parallel_envs` items. """ kwargs = { "obs_type": "pixels_agent_pos", "render_mode": "rgb_array", "max_episode_steps": cfg.env.episode_length, "visualization_width": 384, "visualization_height": 384, } package_name = f"gym_{cfg.env.name}" try: importlib.import_module(package_name) except ModuleNotFoundError as e: print( f"{package_name} is not installed. Please install it with `pip install 'lerobot[{cfg.env.name}]'`" ) raise e gym_handle = f"{package_name}/{cfg.env.task}" if num_parallel_envs == 0: # non-batched version of the env that returns an observation of shape (c) env = gym.make(gym_handle, disable_env_checker=True, **kwargs) else: # batched version of the env that returns an observation of shape (b, c) env = gym.vector.SyncVectorEnv( [ lambda: gym.make(gym_handle, disable_env_checker=True, **kwargs) for _ in range(num_parallel_envs) ] ) def preprocess_observation(observation): return observation / 255.0 def preprocess_reward(reward): return reward / 255.0 env = gym.wrappers.TransformObservation(env, preprocess_observation) env = gym.wrappers.TransformReward(env, preprocess_reward) return env