#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil from pathlib import Path import torch from safetensors.torch import save_file from lerobot.common.datasets.factory import make_dataset from lerobot.common.optim.factory import make_optimizer_and_scheduler from lerobot.common.policies.factory import make_policy, make_policy_config from lerobot.common.utils.utils import set_global_seed from lerobot.configs.default import DatasetConfig from lerobot.configs.train import TrainPipelineConfig def get_policy_stats(ds_repo_id, env_name, policy_name, policy_kwargs, train_kwargs): # TODO(rcadene, aliberts): env_name? set_global_seed(1337) train_cfg = TrainPipelineConfig( # TODO(rcadene, aliberts): remove dataset download dataset=DatasetConfig(repo_id=ds_repo_id, episodes=[0]), policy=make_policy_config(policy_name, **policy_kwargs), device="cpu", **train_kwargs, ) train_cfg.validate() # Needed for auto-setting some parameters dataset = make_dataset(train_cfg) policy = make_policy(train_cfg.policy, ds_meta=dataset.meta, device=train_cfg.device) policy.train() optimizer, _ = make_optimizer_and_scheduler(train_cfg, policy) dataloader = torch.utils.data.DataLoader( dataset, num_workers=0, batch_size=train_cfg.batch_size, shuffle=False, ) batch = next(iter(dataloader)) output_dict = policy.forward(batch) output_dict = {k: v for k, v in output_dict.items() if isinstance(v, torch.Tensor)} loss = output_dict["loss"] loss.backward() grad_stats = {} for key, param in policy.named_parameters(): if param.requires_grad: grad_stats[f"{key}_mean"] = param.grad.mean() grad_stats[f"{key}_std"] = ( param.grad.std() if param.grad.numel() > 1 else torch.tensor(float(0.0)) ) optimizer.step() param_stats = {} for key, param in policy.named_parameters(): param_stats[f"{key}_mean"] = param.mean() param_stats[f"{key}_std"] = param.std() if param.numel() > 1 else torch.tensor(float(0.0)) optimizer.zero_grad() policy.reset() # HACK: We reload a batch with no delta_indices as `select_action` won't expect a timestamps dimension # We simulate having an environment using a dataset by setting delta_indices to None and dropping tensors # indicating padding (those ending with "_is_pad") dataset.delta_indices = None batch = next(iter(dataloader)) obs = {} for k in batch: if k.endswith("_is_pad"): continue if k.startswith("observation"): obs[k] = batch[k] if hasattr(train_cfg.policy, "n_action_steps"): actions_queue = train_cfg.policy.n_action_steps else: actions_queue = train_cfg.policy.n_action_repeats actions = {str(i): policy.select_action(obs).contiguous() for i in range(actions_queue)} return output_dict, grad_stats, param_stats, actions def save_policy_to_safetensors(output_dir, env_name, policy_name, policy_kwargs, file_name_extra): env_policy_dir = Path(output_dir) / f"{env_name}_{policy_name}{file_name_extra}" if env_policy_dir.exists(): print(f"Overwrite existing safetensors in '{env_policy_dir}':") print(f" - Validate with: `git add {env_policy_dir}`") print(f" - Revert with: `git checkout -- {env_policy_dir}`") shutil.rmtree(env_policy_dir) env_policy_dir.mkdir(parents=True, exist_ok=True) output_dict, grad_stats, param_stats, actions = get_policy_stats(env_name, policy_name, policy_kwargs) save_file(output_dict, env_policy_dir / "output_dict.safetensors") save_file(grad_stats, env_policy_dir / "grad_stats.safetensors") save_file(param_stats, env_policy_dir / "param_stats.safetensors") save_file(actions, env_policy_dir / "actions.safetensors") if __name__ == "__main__": env_policies = [ ("lerobot/xarm_lift_medium", "xarm", "tdmpc", {"use_mpc": False}, "use_policy"), ("lerobot/xarm_lift_medium", "xarm", "tdmpc", {"use_mpc": True}, "use_mpc"), ( "lerobot/pusht", "pusht", "diffusion", { "n_action_steps": 8, "num_inference_steps": 10, "down_dims": [128, 256, 512], }, "", ), ("lerobot/aloha_sim_insertion_human", "aloha", "act", {"n_action_steps": 10}, ""), ( "lerobot/aloha_sim_insertion_human", "aloha", "act", {"n_action_steps": 1000, "chunk_size": 1000}, "_1000_steps", ), ] if len(env_policies) == 0: raise RuntimeError("No policies were provided!") for ds_repo_id, env, policy, policy_kwargs, file_name_extra in env_policies: save_policy_to_safetensors( "tests/data/save_policy_to_safetensors", ds_repo_id, env, policy, policy_kwargs, file_name_extra )