import torch from lerobot.common.datasets.factory import make_dataset from lerobot.common.policies.factory import make_policy from lerobot.common.utils.utils import init_hydra_config, set_global_seed from tests.utils import DEFAULT_CONFIG_PATH def main(env_name, policy_name, extra_overrides): cfg = init_hydra_config( DEFAULT_CONFIG_PATH, overrides=[ f"env={env_name}", f"policy={policy_name}", "device=cpu", ] + extra_overrides, ) set_global_seed(1337) dataset = make_dataset(cfg) policy = make_policy(cfg, dataset_stats=dataset.stats) dataloader = torch.utils.data.DataLoader( dataset, num_workers=0, batch_size=1, shuffle=False, ) batch = next(iter(dataloader)) obs = {} for k in batch: if k.startswith("observation"): obs[k] = batch[k] actions = policy.inference(obs) action, timestamp = policy.select_action(obs) print(actions[0]) print(action) if __name__ == "__main__": main("aloha", "act", ["policy.n_action_steps=10"])